CHAPTER 5

PLANE THEORY OF ELASTICITY IN
RECTANGULAR CARTESIAN
COORDINATES

If a problem of elasticity is reducible to a two-dimensional problem, we say that it is
a plane problem of elasticity. The corresponding theory is referred to as the plane
theory of elasticity.

The equations of the plane theory of elasticity apply to the following two cases of
equilibrium of elastic bodies, which are of considerable interest in practice: (1) plane
strain (Section 5-1) and (2) deformation of a thin plate under forces applied to its
boundary and acting in its plane (Section 5-2).

In the past decade or so, a considerable literature on the application of complex
variables to the analytical solution of plane problems has evolved. In fact, the
complex-variable method has been developed to the extent that it is currently
considered a routine approach to the plane problem of elasticity. However, in many
plane problems, the complex-variable method is now being superseded by numerical
methods such as finite element methods, which lend themselves to the treatment of
difficult boundary value problems in engineering. The complex-variable method has
been expounded extensively and authoritatively by Muskhelishvili (1975) and also
by Sokolnikoff (1983). Consequently, the method is treated only briefly in this book
(see Appendix 5B).

In Appendix 5A we discuss briefly the problem of plane elasticity with couple
stresses.
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334 PLANE THEORY OF ELASTICITY IN RECTANGULAR CARTESIAN COORDINATES

5-1 Plane Strain

The plane strain approximation, which serves to represent a three-dimensional
problem by a two-dimensional one, may be applicable to a prismatic body whose
length is large compared to its cross-sectional dimensions and which is loaded
uniformly along its length. An example of such a body is a long hollow cylinder
subjected to lateral pressure. In such bodies the longitudinal displacement compo-
nent—say, w in the z-direction—is often very small compared to the displacement
components in the cross section—say, in the (x,y) plane—and under certain
conditions may be ignored. A formal definition of plane strain is given below, and
the equations of elasticity are simplified accordingly.
For convenience, we employ (x, y, z) notation,

Definition. 4 body is in a state of plane strain, parallel to the (x,y) plane, if the
displacement w is zero, and if the components (u, v) are functions of (x, y) only.

In view of this definition, the cubical strain for plane strain is

ou ov
=—4— 5-1.1
e 3x+3y (5-1.1)

Hence, Egs. (4-6.5) reduce to (isotropic material) (see Table 3-2.1)

o, = Ae +2Ge,, 0, = Ae + 2Gey, o, =Ae

z

o du (5-1.2)
Txy:G’))xy:G a-{—5 s Tx

Equations (5-1.2) show that the stress components are functions of (x,y) only,
because (u, v), hence e, are functions of (x, y) only. :
The equilibrium equations for plane strain [see Eqgs. (3-8.1)] are

—"y+gy+Y= (5-1.3)

Consequently, in plane strain with respect to the (x, y) plane, the component of body
force perpendicular to the (x,y) plane must vanish. Also, because o, o, Ty, are
functions of (x, y) only, the components (X, ¥) of the body force are independent

of z.
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The strain—displacement relations [Eqs. (2-15.14)] reduce to the following form
for plane strain:

du o

=, =, 7 = 0
T T 6 (5-1.4)
yxy - ay ax ’ Ve = YyZ -
Hence, by Eqs. (4-6.6) and (5-1.4),
o, = v(o, +0,) (5-1.5)

Thus, the static equations of elasticity for a body in plane strain with respect to the
(x, y) plane reduce to

do, Oty at do

S+ 4+ X =0, 24247 =0

ox + ay + ax + ay +
g, = Ae + 2Gke,, o, = le + 2Gg,, (5-1.6)
o, = e =v(o, + 7)), Ty = Gy,

In Egs. (5-1.6) it should be noted that o, is deduced from g, and g, [Eq. (5-1.5)].
Hence, the problem is reduced to determining three stress components gy, 0,, T,,.
With Eq. (5-1.5), the stress—strain relations [Eqs. (4-6.8)] may be written in the

form

1

& =—"lo,—v(o, + )]
14+v

€, = —E—[ay - Vo, +0)] (5-1.7)
2(1 4v)

Ty =TT Wy

A state of plane strain can be maintained in a cylindrically shaped body by
suitably applied forces. For example, by Eq. (5-1.5), we see that ¢, does not vanish
in general. Hence, for a state of plane strain in a cylindrical body with the generators
of the body parallel to the z axis, a tension or compression g, must be applied over
the terminal sections formed by planes perpendicular to the z axis. Thus, the effect of
o, is to keep constant the length of all longitudinal fibers of the body. In addition, the
stress components ¢, and ¢, must attain values on the lateral surface of the body that
are consistent with Egs. (5-1.2) or Egs. (5-1.6).

The solution of the plane-strain problem of the cylindrical body may be used in
conjunction with the auxiliary problem of a cylindrical body subjected to long-
itudinal terminal forces to solve the problem of deformation of a cylindrical body
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with terminal sections free of force. If the longitudinal terminal forces are equal in
magnitude but opposite in sign to a,, the superposition of the results clears the
terminal sections of the cylinder of force. However, the resulting deformation of the
body is not necessarily a plane deformation. In general, the solution of the auxiliary
problem involves the deformation of a cylinder by longitudinal end forces that
produce a net axial force and a net couple (pure bending); see Chapter 7.

Example 5-1.1. Plane State of Strain. A region in the (x, y) plane is subjected to a
state of plane strain such that the (x, y) displacement components (u, v) are linear
functions of (x, y), namely (with w = 0 in the z direction)

u=ax+by+c, v =a,x+ byy + ¢, w=0 (a)
Measurements indicate that for x =0, y=1m, u = —3mm, v =2.5mm; for
x=1m, y=0, u=—-2mm, v=Imm; for x=1m, y=1m, u=—-5mm,

v=3.5mm; and for x = y = 0, ¥ = v = 0. Substitution of these conditions into
Egs. (a) yields the result

u = —0.002x — 0.003y, v = 0.001x + 0.0025y (b)
With Egs. (b), Egs. (2-15.14) in Chapter 2 yield, for small-displacement theory,

€ =€, = du/ox = —0.002

€y = €, = dv/ay = 0.0025

1 (0u o (©
612 = cxy = E (a—y +$) = —0001
€3 =€ =0, €3 =€, =0, €3 =¢,=0

With Egs. (c) and Eqgs. (2-9.1) in Chapter 2, strain components relative to any
other set of axes (say, X, ¥) may be computed. For example, let axes (X, Y) be
obtained by a rotation in the (x, y) plane of 30° such that the direction cosines
between axes (X, Y) and axes (x, y) are

ay=v3/2,  ap=1/2,  ay=-1/2, ap=+3)2

(see Table 1-24.1 in Chapter 1). Then by Egs. (¢) and (2-9.1), we obtain the strain
components Ey, Ey, Eyy, relative to axes (X, Y) as (noting that £, = E,, =
Ey; =0)

E\, = Ey = €,a}; + €pa’y + 2615a,,a, = —0.001741
Eyy = Ey = €,@5, + 63,3, + 2¢€1,a5,a5, = 0.002241 (d)
E\y = Eyy = €p1a11ayg + €00810a5 + €15(a,ay + apay;) = 0.001449
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Note that J; = ¢, + €, = Ey + Ey = 0.0005 and J, = ¢,¢, — €, = ExEy — Ejy =
—0.000006.

Example 5-1.2. Stress-Strain-Strain Energy Density Relations: Plane Strain.
The strain energy density for an anisotropic (crystalline) material subjected to a
state of plane strain is given by

U=3Cne + Cpé5y + 2C33615 + 2C 5611623 + 4C 3¢ €12 +4C360¢1,)  (a)
We wish to determine the stress—strain relations for the material. By Eq. (4-4.21) in

Chapter 4, g,5 = 0U/de,y3, where U must be expressed symmetrically in terms of
€12, €37. Thus, let

€ =3 +e) (b)

Then substitution of Eq. (b) into Eq. (a) yields

U=3; [Cllc%l + Cppe3y +2Cs;3 (“—612 ;621)2
+2Cp€62 +4C 5360, ((—12%) +4C360 (%EAH (c)
Then
o = % = Cpyeqy + Craegy + Cizley + €21)
or, as €;; = €y,
o1 = Ciien + Caeyp + 203560, (d)

Similarly,

au
Oy = E = C12611 + C22622 + 2C23612
2
U (e)
oy =01 = 52— = Czen + Cpémn + Csa
12

Example 5-1.3. Integration of Plane Strain—Displacement Relations. The plane
strain—displacement relations as given by Eqgs. (5-1.4) are

€, = ou/ox, €, = dv/dy, Vay = Ou/dy + 0v/0x (a)
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where u = u(x, y), v = v(x, y). Elimination of (u, v) from Egs. (a) yields the strain—
compatibility relationship for plane strain

Pe, P, Py,

» | axz ax dy ®)

In a plane strain problem, the strain components were determined as

€, = Ax* + By?, ¢, = —Bx* — 47, =0 (c)

Vay

Substitution of Eqs. (c) into Eq. (b) shows that the strain components are compatible.
By Egs. (a) and (c),

du av du dv
= — = Ax’ + By, =—=-BX — 4/, =—+—-=0
& =5 + By € P ly Yy » + ™ (d
Integration of the first two of Egs. (d) yields
u=340+ B’ + 1),  v=-By 14 + /() ()

where f,(y), f/2(x) are y and x functions of integration, respectively.
Substitution of Egs. (e) into the third of Egs. (d) yields f{(») + £ (x) = 0, or

fm=C  fin=-C ()

where C is a constant. Hence, integration yields
h=C+D,  fx)=—-C+F (8
where C, D, and F are constants of integration that must be determined by

specification of the rigid-body displacement (Section 2-15 in Chapter 2). Equations
(e) and (g) yield the displacement components

u=147 +Bo? + Cy+D .
v=—By—Lt4y  —Cx+F ®
= Yy =34y X +

Problem Set 5-1

1. The two-dimensional body OA4BC is held between two rigid frictionless walls as shown in
Fig. P5-1.1. The region under the body is filled with a fluid at uniform pressure p. What are
the boundary conditions required to solve for the stresses in body O4BC? Neglect gravity.
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Figure P5-1.1

. For a state of plane strain, o, = f(y). Neglecting body forces, derive the most general

equations for o,, G, 0, and Ty

. The strain energy density U of a linearly elastic material is given by the relation
U= (%/1 + G)J? = 2GJ,, where (4, G) are the Lamé elastic constants and (J;,.J;) are
the first and second strain invariants.

Employing the relationship between U and the stress components g, derive the stress—
strain relations for a state of plane strain relative to the (x, y) plane.

. For a state of plane strain in an isotropic body, ¢, = a)?, 6, = —ax?, 7,, = 0. The body
forces and temperature are zero. Using small-displacement elasticity theory, compute the
displacement components u(x, y) and v(x, y) {a is a constant). (See also Section 5-6.)

. For a state of plane strain in an isotropic body,
g, = @’ + bx, g, = —ax? + by, Ty = —blx+y)

The body forces and temperature are zero. Using small-displacement elasticity theory,
compute the displacement components u(x, y) and v(x, y) (@ and b constants). (See Section
5-6.)

. Consider a rectangular region in the (x, y) plane subjected to a uniform stress ¢ in the x-
direction along the edges parallel to the y axis. The (x, ») axes have origin at the center of
the region.

(a) For an isotropic, homogeneous elastic material in this region, derive expressions for the
(x,y) displacement components (u, v) in terms of (x,y) and arbitrary constants of
integration by the theory of elasticity.

(b) Employ appropriate conditions at the origin (x =y = 0) to eliminate rigid-body
displacements of the region and evaluate the arbitrary constants of integration.

(¢) By elementary means of mechanics of materials, derive the displacement components
and show that the results obtained in part (b) agree with these results.
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5-2 Generalized Plane Stress

As described in Section 3-7 in Chapter 3, for certain kinds of loading, the equations
of plane theory of elasticity apply to thin plates. We define a thin plate to be a
prismatic member (for instance, a cylinder) of very small length or thickness h. The
middle surface of the plate, located halfway between its ends and parallel to them, is
taken as the (x, y) plane (see Fig. 5-2.1).

We assume that the faces (upper and lower ends) are free from external stresses
and that the stresses that act on the edges of the plate are parallel to the faces and are
distributed symmetrically with respect to the middle surface. Similar restrictions
apply to the body forces. By symmetry, note that points that are originally in the
middle surface of the plate lie in the middle surface after deformation. Also, because
the plate is assumed thin, the displacement component w is small, and variations of
the displacement components («, v) through the thickness are small. Consequently,
satisfactory results are obtained, if we treat the equilibrium problem of the plate in
terms of mean values #, v, and w of displacement components (u, v, w) defined as
follows:

1 h/2 1 h/2
) = | ryadn )= 3| e d:
— / .
Lo (5-2.1)
wix,y) = ZJ e wlx, y,z) dz

where bars over letters denote mean values. In turn, substitution of Egs. (5-2.1) into
Egs. (2-15.14) in Chapter 2 yields mean strains €, €,, €, V5 Vyzs Vxz-

Because it is assumed that 7,, = 7,, = 0 on the ends, that is, for z = +4/2 in the
absence of body forces, it follows from the last of Eqs. (3-8.1) in Chapter 3 that for
z==h/2, d0,/0z=0. This follows from the fact that because 7,, =0 for
z=+h/2, ot./ox=0 for z=+h/2, and because 1, =0 for z=+h/2,
ot,./dy = 0 for z = £h/2.

Py

Px
Figure 5-2.1
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Hence, not only is o, zero for z = £4/2, but also its derivative with respect to z
vanishes. Therefore, as the plate is thin, ¢, is small throughout the plate. These
observations lead us naturally to the approximation that o, = 0 everywhere.

Analogously, we define mean values of stress components (o,, ¢, 7,,) as follows:

| {2 | (M2
g :—J o, dz, o :—J 0, dz,

}” xy

TRk, Yoh)
. / (5-2.2)
1 Jh/z
Ty =~ T, dz
Y T, 2 y
Accordingly, the mean values of (o,, 0y, 7,,) are independent of z.
Furthermore,
1" 3 L W2
—J —(1,)dz=~ =0
h b2 32 h —h/2
(5-2.3)
1Jh/2 1 h/2
— ~ (1) dz= =0
h h/2 0z ks —h/2

Also, mean values of body forces are defined as

I 12 ¢
X:'J X dz, Y:—J Y dz, Z:—J Zdz=0 (5-2.49)
U hl)_up h)_np

Substitution of Egs. (5-2.2), (5-2.3), and (5-2.4) into the first two of Egs. (3-8.1)
yields, after integration with respect to z (neglecting acceleration effects),

9. N, - o, o
T T 4 ¥ — o, 2+

Z4+¥=0 2.
=t + (5-2.5)

E3

From the stress—strain relations [Eqgs. (4-6.5) in Chapter 4], it follows from
o, = e + 2Ge, = 0 that (isotropic material)

A v
€, = — ,1+2G( +¢€) = ——v(EX+€y) (5-2.6)

Substituting Eq. (5-2.6) into the first and second of Egs. (4-6.5), we obtain

20G 2AG
g, = /1+2G(6 +€,) +2Ge,, o, = ,1+ZG(€ +¢) + 2Ge, (5-2.7)

The fourth of Egs. (4-6.5) is

ou  ov
Txy = G(a—y + a) (5-28)
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Taking the mean values of Eqgs. (5-2.7) and (5-2.8), we obtain

G, = ME, +&) +2Ge, = Aé + 2Ge,

= Me, + &) + 2Ge, = le + 2G, (5-2.9)
du dv
—_ G —
(ay - ax)
where
- 2lG vE 1 (7?2
l = = — € = - d
/1+2G 1—V2’ € hJ_h/zéx -
(5-2.10)
1 Jh/z
€, =~ €, dz
YT h 2 y

Comparison of Egs. (5-2.5) and (5-2.9) with Egs. (5-1.6) shows that the mean values
of displacement components (u, v) and the mean values of the stress components
(0,, 0y, T,,) satisfy the same equations that govern the case of plane strain, the only
dlfference being that A is replaced by 7 defined by Eq. (5-2.10). Additionally, the
stress components ,,, d,, on the boundary of the plate are replaced by their mean
values G,,, G,, [see Egs. (4-15.1) in Chapter 4].

Taking note of these facts, we may write equations of generalized plane stress
without bars over the symbols. We keep in mind that components of stress, strain,
and displacement are mean values and that 4 is replaced by

TA4+2G 12

Thus, we see that for plane strain and for generalized plane stress, we are led to
the study of the following system of equations:

a0, Brxy ih'xy 8ay

a-&——ay +X =0, " +_8y+Y_O (5-2.11)
du OJv
o, = Ae +2Ge,, 0, = Ae + 2Gey, Ty = G 5 + Ew = nyy (5-2.12)
where
du ov
=—+4— 2.1

e 3x+ & (5-2.13)

Equations (5-2.11) may be written entirely in terms of strain components by
substitution of Egs. (5-2.12) into Egs. (5-2.11). Equations (5-2.11) may also be
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written entirely in terms of displacement components by substitution of Egs.
(5-2.13) and (2-15.14) into Egs. (5-2.12) and substitution of the result into Egs.
(5-2.11).

A more specialized state of stress, called plane stress, is obtained if we set
0, =1, =1, = Z =0 everywhere. Then the equilibrium equations are given by
Eqgs. (5-1.3).

Although in generalized plane stress, the mean values of the displacement
components are independent of z, in a state of plane stress the displacement
components (u, v, w) are not, in general, independent of z. In particular, we note
that ¢, does not vanish and that it is defined by Eq. (5-2.6).

Furthermore, we observe that in a plate, a state of plane stress requires the body
forces and the tractions at the edges to be distributed in certain special ways. It does
not, however, require tractions on the faces of the plate.

Finally, we also remark that the average values of displacement in any problem of
plane stress are the same as if the problem were one of generalized plane stress.
Accordingly, the solution of problems of plane stress may be employed to examine
effects produced by certain distributions of forces that do not produce plane-stress
states, as any such problem can be solved by treating it as a plane-stress problem and
by replacing /4 by 4 in the results. For example, this technique may be employed in
problems of equilibrium of a thin plate deformed by forces applied in the plane of
the plate. Although the actual values of stress and displacement are not determined
by this procedure (uniess the forces actually produce a state of plane stress), the
average values across the thickness of the plate are obtained. Moreover, average
values are the usual quantities measured experimentally.

Example 5-2.1. Plane Stress. Consider a plane stress problem relative to the (x, y)
plane, that is,

O, = Gx(x’ y)v O-y = Uy(x’ y)v Txy = Txy(x’ y)

e —0 (2

The corresponding strain components [Eqgs. (4-6.8) or (5-3.6)] for constant
temperature T are

1 1
€11 :6x:E(o-x—vo-y)’ €22 =E(0y—"0x)
21 +v) 2(1 4+ v)
21 =9, = —F 2T (b)
v
€33 =€, = —E(Jx +0,)

For a particular plane stress problem, it has been found that the (x, y) displace-
ment components (i, v) are given by the equations

U=a;+ax+azy+agxy

(c)
v = bl +b2x+b3y+b4xy
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where g;, b; are constants. We wish to determine the corresponding small-displace-
ment nonzero strain components [Egs. (b)] and the stress components [Egs. (a)] as
functions of (x, y).
By Egs. (2-15.4) and (c),
dv
€1 = & = - =a; +agy, € =€ =——=by+ byx
N i (@

du Jv
2612=ny:@+a=a3+b2 +agx + by

To determine ¢, we need o,, g,. Hence, substitution of Egs. (d) into Egs. (b) and
solution for (g, 0,) yields

E
0, = ——(ay + vb3 + vbx + ayy)

1 —v2
E (e)
% =12 (va, + by + byx + vayy)
Then, by the last two of Egs. (b) and Egs. (d) and (e),
£ (a3 + by + agx + byy)
T = T+ v) 3 2 T ay 1Y
€ =7 __v(az + b3 + byx + azy)

Equations (d), (e), and (f) determine the nonzero stress and strain components.

Problem Set 5-2
1. Repeat Problem 5-13 for the case of plane stress.

2. A material is isotropic and elastic. Body forces and temperature are zero. All stress
components are zero except t,,. Using small-displacement theory, determine the most
general form for 7,

3. Consider a plane stress problem relative to the (x, y) plane. At a point P in the (x, y) plane
the normal stresses on three planes perpendicular to the (x, y) plane and forming angles
120° relative to each other are 4C, 3C, and 2C, respectively, in the counterclockwise
direction, with the direction of the stress 4C coincident with the positive x axis. Determine
the principal stresses at P.

4. The following stress array is proposed as a solution to a certain equilibrium problem of a
plane body bounded in the region —L/2 <x < L/2, —h/2 <y < h/2:
g, = Ay + By + Cy?, aysz3+Ey+F,
rxyz(G+Hy2)x, 0,=T7,=1,=0
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where (x,y,z) are rectangular Cartesian coordinates and 4, B,...,H are nonzero
constants. Determine the conditions under which this array is a possible equilibrium
solution.

It is proposed that the region be loaded such that z,, = 0 for y = +4/2, 6, = 0 for
y="h/2, g, = —a (6 = constant) for y = —£/2, and o, =0 for x = +L/2. Determine
whether the proposed stress array may satisfy these conditions.

5. A flat plate is in a state of biaxial tension. The principal stresses are o, and ¢, (see Fig.
P5-2.5). Two electrical strain gages are located as shown. The angle o is given by

1 . v
sino =
1+v l+v

CoOsS o =

Assume that the material is linearly elastic and isotropic. Prove that the principal stresses
may be read directly (except for a constant factor) as the strains in the direction of the two
strain gages | and 2.

(43

Figure P5-2.5

6. A semi-infinite space is subjected to a uniformly distributed pressure over its entire
bounding plane (Fig. P5-2.6). Consider an infinitesimal volume element ABCD at some

N S A O O O

Figure P5-2.6
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distance from the bounding plane. The normal stress on surface 4B is g, = ¢. In terms of
the appropriate material properties and o, derive expressions for the normal stress
components o,, o, that act on the volume element (axis z is perpendicular to the x,y

plane). Hint: What are the values of the strain components ¢,, €,?

5-3 Compatibility Equation in Terms of Stress Components

Equations (5-2.11) and one supplementary condition (the compatibility condition),
which ensures that there exist two displacement components (u, v) related to the
three stress components (a,, g, 7,,) through Egs. (5-2.12), comprise the equations
of plane elasticity. The compatibility equation may be derived from Egs. (4-14.2) or
from Egs. (2-16.1).

Plane Strain. Consider the state of plane strain. Such a state is defined by the
conditions that ¢,, ¢,, y,, are independent of z, and ¢, = y,, = y,, = 0. Hence, the
compatibility conditions reduce to the single equation [Eq. (2-16.1) in Chapter 2]

& &
A P (5-3.1)
2 2 xdy
Also, Egs. (4-6.8) with Egs. (5-1.5) become
€ ! g 4 (0,+0)
=—|o,—————(0
26T 2204+G)y 7Y
~ ~—i——(a +a,) (5-3.2)
TG\ T 050 T '
1
Yo =G
Substitution of Egs. (5-3.2) into Eq. (5-3.1) yields
#o, &o ) #1
ayz-+-?2y—vV(ax+ay)=28)“,];; (@)
Equations (5-1.3) yield
Bzrxy o, @ ax +£ (b)

) -
ox dy 8x2+8y2+3x dy
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Substitution of Eq. (b) into Eq. (a) yields after simplification

, _ 204+6) (ax oY
Vet =-Felaty

1 aX 3y

= (E“L@) (5-3.3)

Equations (5-2.11) and (5-3.3) represent the equations of plane strain. The equations
of generalized plane stress are obtained from these equations if mean values of stress
and body force are used and if A is replaced by

2.G vE

l=—-" _ "
A+2G 1—»?

Generalized Plane Stress. For generalized plane stress, o, = 0. Hence, by the
third of Egs. (4-6.5) in Chapter 4,
v v
€z = - ':(ex + Cy) = — 1—_—V(ux + Uy) (5'34)

By Eqgs. (5-3.4), we may eliminate ¢, from the first two of Egs. (4-6.5). Then, on
taking mean values, we obtain

3, =4Ae+2Ge, &, =ie+2G;,  i,=G,

o 7 2Gy (5-3.5)
e=¢,t+¢, =15
or, alternatively, in terms of £, v,
&x = 1—_‘)7(&\, —+ sz)
E _ _
0, = -7 (€, +vey) (5-3.5a)
E

T, =—7
¥ T 2T+
The inverse relations are

Ee,=5,—v5,,  Ee,=5,—va, Gi,=1, (5-3.6)
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The mean strain components evidently satisfy the compatibility conditions [Eqs.
(2-16.1) or (5-3.1)]. With Eq. (5-3.6), Eq. (5-3.1) may be expressed in terms of stress
as

V@, +6,)=~(1+ v)(%—k%) (5-3.7)

In view of the principle of superposition, body forces can be eliminated from
consideration if a particular solution is found. We must then solve a problem with no
body forces but with altered boundary conditions. For constant body forces or
centrifugal body forces, particular solutions are easily found. Consequently, let us
consider cases in which body forces are absent. Then the compatibility conditions
for generalized plane stress and strain [Eqgs. (5-3.7) and (5-3.3)] are identical. The
stress—strain relations are the same in both cases, except that A replaces A in
problems of generalized plane stress.

In terms of the Airy stress function F (see Section 5-4), the problem, in either
case, reduces to the solution V2V2F = 0 in the absence of body forces. Furthermore,
by the principle of superposition, any solution of an axial stress problem may
be superimposed on a plane-strain solution. For the general plane orthogonal
curvilinear coordinate system the defining equation for F is obtained by specializ-
ing the expression for V? for the plane, that is, setting ; = 1 and 8/dw = 0 [see
Section 1-22 and Eq. (1-22.13) in Chapter 1].

Summary of Equations of Plane Elasticity. For convenience we summarize
the equations of the plane theory of elasticity for an isotropic, homogeneous
material. Also, for completeness we include the effects of body force (X, Y) and
temperature 7. All quantities are considered to be functions of (x, y) coordinates.

Plane Strain. The stress—strain—temperature relations are

E

7= Tz et — (k]

E
% = T —an e T (1 =6 — L+ VAT

T, =Gy, = E
v = yxy_2(1+v)yxy (5-3.8)

B E
% = v —2v)

e=u+Vv,=¢+t¢

e, +6) — (1 + V)kT]

6z:yxz:yyz:r,tzzf)zz:()
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The compatibility relation in terms of stress components is

E 1 X dY
V2 Z VD +— (= +5) = 39
(0 + ) + 7 VX )+1—v(8x+8y> 0 (5-3.9)

where E (Young’s modulus) and v (Poisson’s ratio) are constants and where

_r .2

Vz
ax? + 9?2

Plane Stress. The stress—strain—temperature relations are

E
o, = m[ex + ve, — (1 4+ v)KT]

E
o, = ﬁ)E[VQ( +¢€, — (1 + v)KT]

Ty =067y = Vxy

2(1+v) (5-3.10)
(= —— et ) — (1 + WAT]

I —v

1
e:ex+ey+ez:—lj[(l —2v)(&, + €) + (1 + v)kT]
xz‘:Tyzz’yxz:'sz:O

The compatibility relation in terms of stress components is

E) Q) 4
V3(o, +0,) + EVA(kT) + (1 + v)(EJF%;) =0 (5-3.11)

Equations (5-3.9) and (5-3.11), subject to appropriate boundary conditions, consti-
tute the equations from which the sum of stress components ¢,, ¢, is determined.
Mathematically speaking, Eqs. (5-3.9) and (5-3.11) are equivalent, as we may write

ax oy
Vo, +0,) +K1V2(kT)+K2<a+a—y) =0 (5-3.12)

where for plane strain K, = £/(1 — v), K, = /(1 — v), and for plane stress K| = E,
K, =1+v. In other words, Eq. (5-3.9) is obtained from Eq. (5-3.11) by the
substitutions

E 1
L 1y —— (5-3.13)

E —
1—v 1—v
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Accordingly, the mathematical problems of plane strain and plane stress are
equivalent.

Example 5-3.1. Compatibility Conditions for Plane Problems. Relation to Three-
Dimensional Compatibility Relations. A Caution. In Section 5-3 we noted that the
strain compatibility equation may be represented in terms of stress components. In
particular, in the absence of body forces and temperature, the compatibility relation
for plane problems reduces to [Egs. (5-3.9) and (5-3.12)]

Vo, +0,)=0 (a)

whereas for the three-dimensional problem, the compatibility relations in terms of
stress components are given by Eqs. (4-14.2) in Chapter 4. It is possible that a two-
dimensional state of stress may satisfy Eq. (a) but may not satisfy all of Egs.
(4-14.2). For example, a two-dimensional solution for a cantilever beam [see Eq.
(b), Example 5-7.1] is given by the stress state

o, =A— 2Bxy, g,=0
2 g (b)
7, = —B(c )

where A4, B, and c are constants. Equation (a) is satisfied by Egs. (b). However, if
Egs. (b) are substituted in Eqgs. (4-14.2), it is found that all the equations are satisfied
identically except for the equation

1 #I
2 T
V‘r’ry—*_l—%vi)xay_ ©
Equations (b) and (c) yield the result
I+v=1 (d)

Thus, Eq. (d) cannot be satisfied unless Poisson’s ratio v = 0, which is not possible
for known materials. Hence, a solution may be compatible in the two-dimensional
state but not in the three-dimensional state.

Problem Set 5-3

1. Consider a wedge hanging vertically in a gravity field of acceleration g (Fig. P5-3.1). The
following elasticity solution for the stress problem of the wedge is proposed:
0, =0, =1, =1, =0, 0, = 3 pgz, T,, = 5 pgx. Discuss this proposed solution.

2. Consider a beam in the region —h/2 <y < h/2, —b/2 <z <b/2, 0 <x < L. Assume
plane stress in the (x, y) plane, with zero body forces. The stress component normal to the
plane perpendicular to the x axis is 6, = —My/I, where M = M(x) is a function of x only,
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z

7 ey
L
£
2 (]
X

Figure P5-3.1

and I = bk*/12. Derive expressions for g, and 1,, subject to the boundary conditions

7., = 0 for y = £h/2 and o, = 0 for y = h/2. What restriction, if any, must be placed on
M in order that the derived state of stress be compatible? What can be said about o, at
y=—h/2?

3. Given the following stress state:

o, = C[ +v(2 =2, Ty = —2Cvxy
0y=C[x2+v(yZ—x2)], ryz:sz:()
6, = Cv(x? + %)

Discuss the possible reasons for which this stress state may not be a solution of a problem
in elasticity.

5-4 Airy Stress Function

Simply Connected Regions. For the plane theory of elasticity, the equilibrium
equations [Egs. (3-8.1) in Chapter 3] reduce to two equations:

do 81:y do
X Xy x =0, 24+ 24y =0 5-4.1
8x+ dy + ox dy ( )

As noted in Section 5-3, we may initially ignore body forces (X, Y) and seek
solutions to Egs. (5-4.1) modified accordingly. Then the effects of body forces may
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be superimposed. However, in the case of body forces derivable from a potential
function V(V2V = 0), such that

Xx=-= y=-2" (5-4.2)

we may incorporate the effects of body force directly. Thus, Eqs. (5-4.1) and (5-4.2)
yield

dol, Oty dol, &
—X4 %y, 2L ¥ _9 5-4.3
ax + ady % + ax ( )
where
o, =0,—-V, o,=0,—V (5-4.4)

Now, for simply connected regions, we note that the first of Egs. (5-4.3)
represents the necessary and sufficient condition that there exist a function ¢(x, y)
such that (see Section 1-19 in Chapter 1)

3
%’ —d, % =1, (5-4.5)

The second of Eqgs. (5-4.3) represents the necessary and sufficient condition that
there exist a function 6(x, y) such that

0 . o0
a = O'y, 5 = —Txy (5-46)

Comparison of the two expressions for t,, shows that

ap 30
x5 (5-4.7)

In turn, Eq. (5-4.7) is the necessary and sufficient condition that there exist a
function F(x, y) such that

¢ =" 0=— (5-4.8)
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Substitution of Eq. (5-4.8) into Eqgs. (5-4.5) and (5-4.6) shows that there always
exists a function F such that for body forces represented by Eqgs. (5-4.2), stress
components in the plane theory of elasticity may be expressed in the form

PF . ®PF RF

GXZW’ T T"y_—axay

Alternatively, by Eqgs. (5-4.4) we have

PF PF *F
+ V, O'y = _8.;2— + V, ‘ny = — e 8y (5-49)

O'XZW

The function F is called the Airy stress function in honor of G. B. Airy, who first
noted this relation.

Because it was assumed that the stresses o,, Oy Ty, aTE single-valued and
continuous together with their second-order derivatives [note the compatibility
equations in terms of stress components Eq. (5-3.3)], the function F must possess
continuous derivatives up to and including fourth order. These derivatives, from the
second order on up, must be single-valued functions throughout the region occupied
by the body [see Egs. (5-4.9)].

Conversely, if F" has these properties, the functions o,, 0, 7,, defined in terms of
F by Egs. (5-4.9) will satisfy Eq. (5-4.1), provided body forces are defined by Egs.
(5-4.2). Additionally, to ensure that the stresses so determined correspond to an
actual deformation, the compatibility conditions for the plane theory of elasticity
must be satisfied. For body forces defined by Eq. (5-4.2) (or for constant body

forces), this condition becomes [see Eq. (5-3.3) or (5-3.7)]
Vio, +0,) =0 (5-4.10)
Adding the first two of Egs. (5-4.9), we note that
o, +0,=VF+2V (5-4.11)
Substitution of Eq. (5-4.11) into Eq. (5-4.10) yields (because V2V = 0)

PF PF GF
EAVZY T, S 4.12
VVIF =S5 +2 gt e = (5-4.12)

Equation (5-4.12) is the compatibility condition of the plane theory of elasticity with
constant body forces or body forces derivable from a potential function [Eq. (5-4.2)]
in terms of the stress function F.
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Equations of the form of Eq. (5-4.12) are called biharmonic. Solutions of Eq.
(5-4.12) are called biharmonic functions (Churchill et al., 1989). Some well-known
solutions to Eq. (5-4.12) are, in rectangular coordinates,

Y, y2’ .};’ X, xZ’ x3v Xy, xzyv xyzv x3y’ xy3’
x> =2, x* =4, =Lyt

(5-4.13)
cos Ay cosh Ax, cosh Ay cos Ax, ycos Ay cosh Ax

ycosh Ay cos Ax, xcos Ay cosh Ax, xcosh Ay cos Ax

By the above analysis, the problem of plane elasticity has been reduced to seeking
solutions to Eq. (5-4.12) such that the stress components [Eqgs. (5-4.9)] satisfy the
boundary conditions. A number of problems may be solved by using simple linear
combinations of polynomials in x and y (see Section 5-7).

Airy Stress Function with Body Forces and Temperature Effects. More
generally, Eq. (5-4.12) may be written to include temperature effects [see Egs.
(5-3.9), (5-3.11), and (5-3.12)]. Body forces derivable from a potential function
[Eq. (5-4.2)] do not affect Eq. (5-4.12). Hence, for potential body forces, Eq. (5-
4.12) generalized to include temperature effects is [see Eq. (5-3.12)]

V2V2F + CV(kT) = 0 (5-4.12a)

where C = E for plane stress and C = E/(1 — v) for plane strain. Cases of more
general body forces ordinarily must be treated individually.

Problem. Verify that the functions listed in Eq. (5-4.13) satisfy Eq. (5-4.12).

Boundary Conditions. 1t is frequently convenient to have the stress boundary
conditions [Egs. (4-15.1) in Chapter 4] expressed in terms of the Airy stress
function. For simply connected regions, Eqs. (4-15.1) may be transformed as
follows.

Consider region G: (x, y) bounded by the curve I' (Fig. 5-4.1). The unit normal
vector (+outward) is

d
n=(,mn)= (% —%, o) (5-4.14)

where s denotes arc length measured from some arbitrary point P on I'. The unit
tangent vector to I' is denoted by ¢, the positive direction of t being such that (n, t)
form a right-handed system.
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Figure 5-4.1

For the plane theory of elasticity with respect to the (x, y) plane, the boundary

conditions [Egs. (4-15.1)] reduce to

Oy = lo, +m1,,,

Substitution of Egs. (5-4.14) into Egs. (5-14.5) yields

dy dx dy

O,y = =1

nx Oy E ~ Ty E ’ Oy
By Egs. (5-4.16), (5-4.5), and (5-4.6), we eliminate o,, 0,

oy wd_m
™8y ds x ds  ds
90 dy 0 dx  db

g = - —— — - — =

w dyds axds  ds

or, multiplying by ds, we get

_9 4 L 0
amds—a dx+ay dy=d¢

a0 a0
— - — —_— d =
Gy ds o dx + y = df

Y ds

0, = Ity +no, (5-4.15)

dx
o, - (5-4.16)

T,y t0 obtain

(5-4.17)
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Integration of Eq. (5-4.17) yields [with Eq. (5-4.8)]

oF !
¢:$:J6mdS:JGMdS+C1:RX+C1
0 (5-4.18)

oF !
Bzgz — | Oy ds =~ oanyds+C2 =—-R,+C
where (R,, R)) denote the (x, ) projections of the total force acting on T from 0 to /,
and (C,, C,) are constants. Equations (5-4.18) express the stress boundary condi-
tions [Egs. (4-15.1)] in terms of derivatives of the Airy stress function F.

The stress boundary conditions may be interpreted physically in terms of the net
force and net moment at s = / resulting from the stress distributed on the boundary
from s = 0 to s = /. For example, recall that by definition the total differential dF of
Fis

oF

aF
== el 4.19
dF = — dx+ 3 (5-4.19)

Substitution of Egs. (5-4.18) into Eq. (5-4.19) yields, after integration,
! !
FO = [ dF = [ (<R, dr+ R )+ Q=30+ Cole —30) + G
0 0

Because linear terms in F' do not contribute to the stress components [Eq. (5-4.9)
with ¥V = 0], we take C; = C, = C; = 0. Then integration by parts yields [with
Egs. (5-4.18)]

!

F(l) = L(—Ry dx + R, dy)

!
= (=xR, + R, ~ L(—x dR, +y dR,)

')

= 0 Ry(0) + 3 R(D) + jo(xo,,y — y0,) ds

! !
= —J (x; — x)o,, ds + J 0 —»)o,ds =M, (5-4.20)
0 0

where M, denotes the moment with respect to P: (s = /) of boundary forces on I'
from the point P: (s = 0) to the point P: (s = /). Thus, Eq. (5-4.20) shows that the
value F(/) of the Airy stress function at s = / relative to its value at s = 0, is equal
to the net moment of the boundary forces on I' from the point s = 0 to the point
s=1.
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Equation (5-4.20) replaces one of the boundary conditions [Egs. (5-4.18)]. To
obtain a second equation, consider the directional derivative of the Airy stress
function in the direction of n (Fig. 5-4.1). We have [see Section 1-8 in Chapter 1 and
Egs. (5-4.14) and (5-4.18)]

dF ()

W:n-gradF

(Y YL

ds
dx dy ! !
— (& 2. d
(ds ’ ds) l:,[o O 45 .[0 Oy 5

= —t-R (5-4.21)

where R denotes the resultant external force acting on I' from the point s = 0 to the
point s = /. Hence, the normal derivative of F at point s = / is equal to the negative
of the projection R on the tangent t to the curve I' at point s = /.

Equations (5-4.20) and (5-4.21) serve as boundary conditions in terms of the Airy
stress function F. If the boundary I is free of external forces, Eqs. {(5-4.20) and
(5-4.21) yield

dF(l)

F() =0, dn

0 (5-4.22)

Multiply Connected Regions. The above argument assumes that derivatives
G = G(x, y) of second order or higher of the Airy stress function are single-valued
functions of (x, y). Hence, it is restricted to simply connected regions for which
é-sz, P:ﬁ, :§E (5-4.23)
ax  dy ax ay
are necessary and sufficient conditions for the existence of G (see Section 1-19 in
Chapter 1). For multiply connected regions with bounding contours L, (Fig. 5-4.2),
the condition (5-4.23) is only a necessary condition for the existence of the single-
valued functions G(x,y). For a multiply connected region, in addition to Eq.
(5-4.23), the conditions

Jk:J Pdx+Qdy=0, k=123....m (5-4.24)
L

k

are also required.

Accordingly, in order that the derivatives G(x, y) of second order or higher of the
Airy stress function F(x, y) be single-valued, it is necessary and sufficient that in
addition to Eq. (5-4.23), the following conditions (Muskhelishvili, 1975) hold:

J=h==J=--=J,=0 (5-4.25)
where J, is defined by Eq. (5-4.24).
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sm 1 L, +1

Figure 5-4.2

The defining equations for the Airy stress function [Eqs. (5-4.12), (5-4.20),
(5-4.21), (5-4.25)] may be expressed for the general plane orthogonal curvilinear
coordinate system by specializing the results of Section 1-22 in Chapter 1 for the
plane.

Equations (5-4.23) and (5-4.25) ensure the single-valuedness of the stress
components d,, 6,, T,,. However, they do not assure the existence of single-
valued displacement components (u, v), as these components are obtained by an
integration of stress (or strain) quantities, this integration process possibly yielding
multivalued terms. Accordingly, if we require single-valued displacement, we must
select the arbitrary functions (or constants) that result in the expressions for (u, v) in
such a fashion that the single-valuedness of displacement is ensured. Although we
ordinarily require that the displacement be single valued, the concept of multivalued
displacement components may be interpreted in a physical sense and finds an
application through Volterra’s theory of dislocation (see Love, 1944, pp. 221-228).

Example 5-4.1. Plane Theory of Thermoelasticity. Concept of Displacement
Potential. In the absence of body forces, the plane theory of thermoelasticity may
be reduced to the problem of determining a stress function F such that [Eq.
(5-4.12a)]

V2V2F = —CVA(kT) (E5-4.1)

where C = E for the plane-stress state and C = E/(1 — v) for the plane strain state.
In addition to Eq. (E5-4.1), the stress function F must satisfy appropriate boundary
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conditions (see Section 5-4). In general, the solution of Eq. (E5-4.1) subject to
specific boundary conditions is a difficult mathematical problem, although in certain
special cases simple solutions may be obtained. A general solution of Eq. (E5-4.1)
may be obtained by adding a particular solution, for which the right-hand side of Eq.
(E5-4.1) is satisfied identically, to the solution (complementary solution) of
V2V2F = 0. A method of obtaining a particular integral of Eq. (E5-4.1) has been
outlined by Goodier (1937). The method is frequently referred to as the method of
displacement potential, because displacement representations and certain concepts
from potential theory are employed.

Following Goodier, we represent the plane theory of thermoelasticity in terms of
displacement components. Initially, we consider the case of plane stress, the results
for plane strain being obtained by a simple transformation of material constants.

Let (x,y) denote rectangular Cartesian coordinates. Let (u, v) denote displace-
ment components in the (x, y) directions, respectively. In terms of (u, v), the stress
components for plane stress are (see Section 4-12 in Chapter 4)

E
o ———F%+V@L41+wm1

T ovi e

E fov du
S I 7 & E5-4.2
% 1—v2[8y+v ox (1+7) ] (E5-4.2)

. = E 3u+3v _Gau_*_@

=204+ \dy ax)  \dy ax
Substitution of Egs. (E5-4.2) into the equilibrium equations for plane stress yields, in
the absence of body force [see Eq. (5-4.1)],

de 1—v_, aT
T Y ax
de l—v_, oT
%€ =2k — E5-4.3
T TEe Y P (ES-4.3)
e_au v
T oy
Let
ay ay
= == E5-4.4
u ox’ v ay ( )

where ¥ = /(x, y) is called the displacement potential function. Substitution of Egs.
(E5-4.4) into Egs. (E5-4.3) yields

b 1 ’
e - kT } =
8x(1+vVl// ) 0

a1
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These equations are satisfied identically if
V2 = (1 + vkT (E5-4.5)

Accordingly, the solution of Eq. (ES5-4.5) represents a particular solution of Egs.
(E5-4.3). To obtain a general solution of Egs. (E5-4.3), we must add to the solution
of Eq. (E5-4.5) the complementary solution of Egs. (E5-4.3); that is, we must add
the solution of Eqs. (E5-4.3) for the case T = 0. This general solution must then be
made to satisfy the boundary conditions of the problem.

By Egs. (E5-4.2), (E5-4.4), and (E5-4.5), the stress components corresponding to
the particular solution Vs are

/ Py
g, = -2G V
o, = —2G % (E5-4.6)
, Py
Ty =26 B oy

In the absence of temperature 7, the complementary solution of the plane
problem is expressed in terms of the Airy stress function F {Eqs. (5-4.9)].
Accordingly, the stress components for a general solution of the plane stress
thermoelastic problem are, by Egs. (5-4.9) and (E5-4.6),

o, = %(F - 2Gy)
&
0, = 25 (F - 2Gy) (E5-4.7)
&

Similarly, for the case of plane strain, we have

Stress—Displacement Relations:

au  EKT
O =Ae+26 o -1,
v EkT
—Jet+26 L
Ty =Aet 26 0T,
EkT
o, =vo,+0,)— EkT = le — (E5-4.8)
Y 1—2v

du ov

=Gl—=+=

b (ay+ ax)
vE E ou ov

= =t M
T+ (1 =29 A+ Tuw
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Equilibrium Equations in Terms of Displacement:

0 kT
a—e+ (1 = 20)V2u = 2(1 +v) %
X X
de (1 =20V =2(1 4 v) UKT) (349
dy dy
Displacement Potential-Temperature Relation:
1
Vi =1 +: kT (E5-4.10)

With the displacement potential function iy defined by Eq. (E5-4.10), the stress
components (o,, 0, T,,) are again given by Eqs. (E5-4.7). Then o, is determined by

Eq. (E5-4.8).

In the preceding method of integration of the stress equations we have used a
stress function or a displacement potential. In a certain class of problems the
thermal-stress equations may be integrated more directly by other methods (Sen,

1939; Sharma, 1956; McDowell and Sternberg, 1957).

Problem Set 5-4

1. In a state of plane strain relative to the (x, y) plane, the displacement component w = 0

and the displacement components (v, v) are functions of (x,y) only. Hence, the
components of rotation w, = w, =0 and @ = w,. For zero body forces (set ¥ = 0),
we note that the equations of equilibrium are satisfied by Egs. (5-4.9). Show that

6, + 0, =2(A+ Ge

where e is the volumetric strain or dilatation and where A, G are the Lamé constants.
Hence, show that in terms of dilatation and rotation the equations of equilibrium are
0w

3 3
G+260 %26 % —0, G426 %126
ax dy dy

ow
ax

=0

Thus, show that e and w are plane harmonic functions.

. Because the dilatation e and rotation w are plane harmonic functions (see Problem 1),
(4 + 2G)e + i2Gw is a function of the complex variable x + iy, where i is +/—1. Also, the
Airy stress function F is related to e by V2F = 2(4 + G)e, where

¥ ¥
2—_ I
v T 3y?

Introduce the new function ¢ + iy of x + iy as follows:

E+in= J[(/l +2G)e + 2Gw] d(x + iy)
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so that
& on A+2G _, I
—=—=(A4+2G)e=———V°F, - ==
gy At20e=30106 o ax - 20
where F is Airy’s stress function. Hence, show that
20%=ﬂ__'{__vzpz_ﬂ+a_é
x 3y 204+6) x2 o ox
2G%:ﬁ__’1_v2pz_ﬂ+%
y &2 24+06) W oy
and that
u *PF FF ¥
26 -=-u -2 = — =
o wmy T Twa
G _FF o FF
ax dx dy axdy ox
and that there follows
oF oF
2Gu——a+f, 2Gv_—g+n

These equations define the displacement components (u, v) when F' is known.

3. We recall that
ou Ov _Ov  Ou

e=—+— S

x YT

These equations with the definitions of £, # given in Problem 2 yield, after integration,
8 m a[y¢ ,
‘= ax[z(,1+2G)] +8y[2G i

3 wm a [ ¥ .
U_By[2(/1+2G):| o [2(; t
where v/ + i is a function of x + ip. Let & = 8f /ox, v = 8f /3y, V*f = 0. Show that
¢ i+G ¥ o
“=26726G+120° B T
b n __A+G an  of
T20+26) 26G.+26) m " o

These equations define (u, v) when e and  are known.

4. With the information given in Problems 2 and 3, show that

A+G
A+2G

and that the formulas for (i, v) given in Problems 2 and 3 are thus equivalent.

F=-2Gf +

mn
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5. Let a thin plate with constant thickness and with mass density p rotate with constant
angular velocity w above the y axis (Fig. P5-4.5). Neglecting gravity, write an expression
for the inertia force X per unit volume (body force per unit volume) that acts on an
arbitrary mass element of the plate. Write the differential equations of equilibrium for the
plate. Write the general solution of these equations in terms of Aliry’s stress function F.
Show that the equation of compatibility is V4F = (1 — v)pw?, where v is Poisson’s ratio.

4

. Figure P5-4.5

6. An infinite plane strip is bounded by the lines y = £1. The stresses on the lines y = +1
are g, = cos x, T,, = 0. There is no body force. By assuming an Airy stress function of
the form f(y) cos x, determine o, 9,, 7, as functions of (x, y).

7. The following stress—strain relations pertain to the anisotropic flat thin plate subjected to a
state of generalized plane stress:

& = S10x + 520,
€ = 8120, + 55,0,
Py = 8337y, (x,¥) = rectangular Cartesian coordinates

where ), S;5, 833, Sy, are elastic constants and where (o,, 0, 7,,) and (¢, ¢, y,,) are
average values of stress and strain through the thickness. Let (o,, 0, 7,,) be defined in
terms of an Airy stress function F. Show that the defining equation for the Airy stress
function F is of the form

ﬁ + ﬁ ﬂ + o ﬂ =0 ()
a2 Tty e T 2 2 ) T
where a,, a, are constants. For the case S|, = §,, = 1/E, S, = —v/E, S33 = 1/G, show

that Eq. (a) reduces to the biharmonic equation.
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8.

10.

PLANE THEORY OF ELASTICITY IN RECTANGULAR CARTESIAN COORDINATES
Let
3 HTLX
F=al +b +3 4,0 cos(—L—)
n=1

be an Airy stress function for a plane, isotropic problem, where a, b, L are constants, and
A, (y) are functions of y, Derive the defining differential equation for the coefficients 4,,.

Consider a plane rectangular region —L < x <L, —C < y < C. Assume that no net
force or no net couple acts on the sections x = £L. Discuss how the arbitrary constants in
the solution of the differential equation for 4,(y) may be evaluated.

. Consider a case of plane stress without body forces in the region —c <y <c¢,0<x < ¢

(see Fig. P5-4.9). If the resultant of the stresses in the x direction is zero, the elementary
beam formula yields o, = My/I; that is, o, is a linear function of y.

c
X
(4
& l >
y
Figure P5-4.9
(@) Let 6, = F,,, 0, = F,, 7, = ~F,,. Write the most general expression for F(x,y)

that satisfies the equations of equilibrium and yields o, as linear function of y in the
form o, = yf(x).

(b) Assuming that the material is isotropic and linearly elastic, write the equation of
compatibility for F(x, y) as determined in part (a).

(¢) Determine the most general form of F(x, y) that satisfies the equations of equilibrium
and compatibility, and yields o, linear in y.

(d) Derive expressions for the stress components using the stress function derived in part
(©).

(¢) Assume that no load is applied along the line y = ¢. Show that the elementary
formula can be correct, strictly speaking, only if the stresses are those produced in a
cantilever with a concentrated vertical load at the end and/or a moment applied at the
end.

The general stress—strain—temperature relationship for an isotropic material is

1 v
€ :EGX—-EO-'V_EO-ZJ’_ICT
v 1 v
6="% X—}-EJ),—EGZ-D-kT

v v 1
€, = —EGX—EG),+EGZ+kT

1 1 1

yyz = 6 Tyzs Yz = Etxz' yxy = 6 1’-)cy

Consider a body that is in a state of plane strain.
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12.

13.

14.
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(a) Derive the “two-dimensional” Hooke’s law expressing the strains ¢,, ¢, ...as func-
tions of g, g,, T, and T = T(x, y).

(b) Assuming that body forces are negligible, let o, = F,, 0, = Fy,, 1, = —F},, where
F is a stress function. Derive the compatibility conditions in terms of T and F. Thus,
show that F(x, y) must be biharmonic if T(x, y) is harmonic.

For a plane problem, the stress components in the (x, y) rectangular region 0 <x <L,
—c¢ <y < ¢, where L and ¢ are constants, are given by the relations (g = constant)

4¢3 4¢3 5
3

3 6
o, = xy + 4 <—2xy3 + —czxy)

4c?  4c

C3gxt o g 4 a4 4 3,
Txy—ggy(c —J’)—@(C —)/)+4—;3‘ ?(C -5

(a) Show that these stress components satisfy the equations of equilibrium in the absence
of body forces.

(b) Derive the Airy stress function from which these stress components are derivable.

(¢) Show that the stress state is compatible.

(d) Determine the problem that the stress components represent.

The stress function for a cantilever beam loaded by a shear force P at the free end is
F=Cxy® + Cyxy

(a) Evaluate the constants C, and C,.

(b) Derive the expressions for the displacements u and v.

(c) Compare v with the expression derived for displacement y from elementary beam
theory, EI(d?y/dx*) = M.

Apply the stress function F = —(P/d*)x)*(3d — 2y) to the region 0 <y <d, 0 <x.

Determine what kind of problem is solved by this stress function.

The stress—strain relationship for a certain orthotropic material may be written as
¢, = Cypoy, o, f=1,2,....6
where
Cyp G Cy3 O 0 0
Cy Cp Cy O 0 0
C. = Gy Cp Gy 0 0 0
““lo 0o 0 Cy 0 0
0 0 0 0 Cs5 O

0 0 0 0 0 Cg
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and
01 = Oy, 0, = O-,V’ 03 = 0y, 04 = Tx)" 05 = Tx 06 = Tyz
€ = & € = Ey’ €3 = €&, € = ))xyv €5 = Vo> €6 = yyz

(a) For this material derive the fourth-order partial differential equation that a stress
function must satisfy in order to meet equilibrium and compatibility requirements for
plane stress in the xy plane. Neglect body forces.

(b) Show that the equation derived in part (a) reduces to V*F =0 for an isotropic
material.

15. Consider the Airy stress function F = Ax’y, where 4 is a constant and (x,y) are
rectangular Cartesian coordinates. Determine the plane elasticity problem that is solved
by this function for the region —a <x <a, -b<y <b.

16. Show that the function
F= %[IOJCZ(Zﬁ 302 — 222 — 502 + 4ty — M)

may be employed as a stress function. For the plane region 0 <x <L, 0 <y <e,
determine the stress boundary conditions, and describe fully the plane problem for which
the stress function serves as the solution for equilibrium.

17. Show that the three-dimensional equilibrium equations without body force are satisfied, if
the stresses are derived from any six functions A, B, C, L, M, N as follows

0, =B, +Cy—2L,,  tT,=—A,+ M, +N,—L),
Uy = er +Azz _2sz’ T = _Bzx+(Nz+Lr —_My)y
G, = Ay +By—2N,, Ty =—Cy+ (L +M,—N),

Subscripts on 4, B, C, L, M, N denote partial derivatives.
By discarding some of the above functions, obtain Airy’s solution to the equilibrium
equations of plane stress theory relative to the yz plane.

18. A dam or retaining wall is subjected to a linearly varying pressure p = p,y. The slice

shown in Fig. P5-4.18 is assumed to be in a plane state, with all quantities functions of

(x, y) only.

(a) Write down the stress boundary conditions for the faces of 40, BO.

(b) On the basis of part (a), write the simplest Airy stress function that will ensure
satisfaction of the boundary conditions on 40, BO. Explain your choice.

(¢) Let the body force of the dam be pg in the y direction, where p is the mass density
and g is the gravity acceleration. Including the effect of body forces, determine

explicitly in terms of known quantities the complete expressions for 6., 0,, 1,,. (Hint:
Note that the body force pg is derivable from the potential function V = —pgy.)
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DAM

y

Figure P5-4.18

19. A solution to a plane strain equilibrium problem in the absence of body forces is
generated by the Airy stress function 4yx3.
(a) Determine whether this solution is compatible for a three-dimensional problem.

(b) With this Airy stress function, derive expressions for the stress components; hence,
for a linearly elastic isotropic material, derive the corresponding strain components.

20. For homogeneous orthotropic plane stress problems, the stress—strain relations relative to
(x,y) axes are:

€& = (O-x/Ex) - vxy(ay/Ey); & = (Jy/Ey) - v)'x(Ux/Ex) (a)
Yy = xy/G = {[Ex + (1 -+ 2Vyx)Ev]/ExEv}Txy

where the symbols are self-explanatory. The strain energy density U is given by the
formula
U + A€ + B& + 2Cee, + Dy}, (b)

(a) By the relations o, = aU/d¢,, derive the stress—strain relations.
(b) With the result of part (a) and Eq. (a), derive a relationship among E,, v,,, E,, and v ,..

X Vxys Hys
() As in the isotropic case, assume that a stress function F(x, y) exists such that
#F *F FF ©
0, = —, g, =, T = — C
T2 Yool v ax dy

Derive the defining equation for the stress function F(x, y) in the form

¥ o, P\(PF FF
(et # 5 (G + ) =0 @

where k* is expressed in terms of E,, E,.
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(d) Let F = (P/61)(3b°xy — x*), where P, B, and I are constants. Show that F satisfies
the equation V2V2F = ( for isotropic materials and also satisfies Eq. (d). Hence, F is
an appropriate stress function for both isotropic and orthotropic materials.

5-5 Airy Stress Function in Terms of Harmonic Functions

In this section we consider the problem of representation of the Airy stress function
in terms of a pair of suitably chosen conjugate harmonic functions and a third
harmonic function. Such a representation allows us to express the general solution of
the biharmonic equation in terms of harmonic functions.

Let ¢ be a harmonic function in (x, y); that is, V2¢ = 0, where V? is the two-
dimensional Laplacian. It may be shown that a solution of the biharmonic equation
V2V2F = 0 may be expressed in terms of ¢ by any one of the following forms:

xp, yh, P+ (5-5.1)

We note that a function Q; defined by
0 =VF=o0,+o0, (5-5.2)
where F is the Airy stress function, is harmonic in the absence of body forces and

temperature, as V’Q; = V?V2F = 0. The function Q, related to Q, by the Cauchy—
Riemann equations (Churchill et al., 1989)

00 _30, 0 _ 90

, - (5-5.3)
ox dy ay ox
is the conjugate harmonic of Q,. By Egs. (5-5.2) and (5-5.3), we note that
V0, =V’Q,=0 (5-5.4)

That is, O, is harmonic.
By the Cauchy integral theorem (Churchill et al., 1989) of complex variables, the
integral of the analytic function

f@) =0 +i0; (5-5.5)
where z = x + iy, i = +/—1, is another analytic function, say (z). Thus,

1
c

V@) = g1 +igs = Jf(Z) d (5-5.6)

is analytic, where ¢ is as yet an arbitrary constant. The functions (q,,q,) are
conjugate harmonic functions; that is, they satisfy Eqs. (5-5.3). We note by Eq.
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(5-5.6) that ¥/'(z) = (1/c)f(z), where the prime denotes differentiation with respect
to z. Hence,

rollir vt vl (Ol

Because dz/0x = 1, we obtain from the above results and Eq. (5-5.5)

3‘11

p +i = _(Ql +i0,) (5-5.7)
x

Equating real parts of Eq. (5-5.7), we obtain

a 1
H=-0 (5-5.8)
x c
Because (gq,, q,) satisfy Eqgs. (5-5.3), we obtain from Egs. (5-5.3) and (5-5.8)

d
2= ) (5-5.9)
y ¢

Accordingly, by Egs. (5-5.8), (5-5.9), and (5-5.2), we find that p, defined by
po=F —xq, —yq, (5-5.10)

is harmonic, provided ¢ = 4. Accordingly, the Airy stress function F may be written
in the form

F=xq, +yq, + py (5-5.11)

where (gq,,q,) are suitably chosen conjugate harmonic functions and p, is an
arbitrary harmonic function. Alternatively, we may take F' in the forms (provided
c=4)

F =2xq, +p (5-5.12)
or

F =2yq, +p, (5-5.13)
where (p,, p,) are arbitrary harmonic functions.

5-6 Displacement Components for Plane Elasticity

Direct Integration Method. When the plane elasticity stress components o, 0,
7,, are known, the strain components ¢,, ¢,, y,, may be determined by Eqs. (5-3.6)
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for generalized plane stress or by Egs. (5-3.2) for plane strain. Then integration of
the strain—displacement relations [Egs. (5-1.4) for plane strain or Eqgs. (5-1.4) with ¢,
given by Eqgs. (5-3.4) for generalized plane stress] yields the (x,y) displacement
components (u, v). The integration of the strain—displacement relations yields an
arbitrary rigid-body displacement (see Section 2-15 in Chapter 2 and Examples
4-18.1 and 4-18.2 in Chapter 4). Accordingly, complete specification of the
displacement (u, v) requires that the rigid-body displacement of the body be
known. For example, in Example 4-18.1, it was specified that the point
x=y=z=0 be fixed and that the volumetric rotation for this point vanish.
Consequently, the displacements and rotations of all other points and volume
elements in the body were determined relative to the point and volume element at
x =y =2z=0. Similarly, to fix the rigid-body displacement in the solution of the
plane problem, we may specify the displacement of some point (say, xg, ) and the
rotation of a line element (say, a line element through point x;,y,).

Representation in Terms of Airy Stress Function. Alternatively, we may
derive formulas for the plane displacement components (u, v) in terms of the Airy
stress function. We carry out the calculation for the case of the plane stress. The
results for plane strain may be obtained in a similar manner.

For plane stress relative to the (x, y) plane, the stress—strain relations are

ou

=7 = E(ox —va,)
a 1

€, = 5 = E(Gy —va,) (5-6.1)
dv ou 1

Ty =ty T G

where (¢, €,,7,,) are the strain components, (d,, 0y, T,,) are stress components,
(u,v) denote the (x,y) displacement components, £ denotes the modulus of
elasticity, v is Poisson’s ratio, and G = E/[2(1 + v)].

In terms of the Airy stress function F, the stress components are [Eqs. (5-4.9)
with V' = 0]

°F ?F °F
O'XZW, G'y:W, Txy: —axay (5‘62)
Equations (5-6.1) and (5-6.2) yield [with Eq. (5-5.2)]

ou °F

E==—(1+v) 25+ 0,
ax ax
5 o2F (5-6.3)

v
E==—(1+V) 5 +0

¥ 2
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We replace Q; by 4(9q,/dx) in the first of Eqs. (5-6.3) and by 4(dq,/dy) in the
second [see Egs. (5-5.8) and (5-5.9)]. Thus, after dividing by 1 + v, we find

oM __PE. 4 ¥
ax ox?  1+4+v ox
ow__BF 4 g
By dyr 14y oy

(5-6.4)
2G

Integration of Egs. (5-6.4) yields

oF 4
26u = —aﬁ-mql + £

oF 4
2Gv = ——
v 8y+1+v

(5-6.5)

g, +£(x)

where f,(y), fo(x) are arbitrary functions of integration.
To interpret ( f|, ;) of Egs. (5-6.5), we note that by the last of Eqgs. (5-6.2) and
Egs. (5-6.5), with Egs. (5-5.3)

v du ?F 1dfy 1df
fxy—G<a+5;> T Tww 2ay 24
Hence,
a  d
L P2 5-6.6
dy + dx ( )
Integration of Eq. (5-6.6) yields
fi=Ay+B,  fi=—-Ax+C (5-6.7)

Hence, the functions ( f;, f;) represent a rigid-body displacement (Section 2-15 in
Chapter 2). Discarding them, we get

G — oF n 4
TR + vq1
(5-6.8)
2Gv = Gl + 4
Ty 14y 7

Equations (5-6.8) determine displacement components (x, v) when the stress
function F is known. The function Q, is determined by computing V2F [Eq.
(5-5.2)). Then the function @, is determined by means of the Cauchy—Riemann
equations [Egs. (5-5.3)]. The functions (gq,, ¢,) are then determined by integration of
the function f(z) = Q; + iQ, [Egs. (5-5.5) and (5-5.6)].
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The method outlined above is useful for the determination of displacement
components (u, v) for those cases in which direct integration of the strain—displace-
ment relations fails (see Examples 4-18.1 and 4-18.2).

Example 5-6.1. Stress Function for the Flexural Wrinkling of a Sandwich Panel.
Because of in-plane compressive forces (F) in the compression facing of a sandwich
panel (Fig. ES-6.1), flexural wrinkling (Chong and Hartsock, 1974), which is a
localized instability, may occur prior to overall buckling. The compression facing
can be treated approximately as a plate supported by the elastic core bounded by the
tension facing. The core under plane strain conditions is governed by Eq. (5-4.12) in
terms of the Airy stress function F:

*F 0*F *F

it TP g tgr =0 @

Equation (a) may be satisfied by taking F in the form (Timoshenko and Goodier,
1970)

F =F(x,y) =f(y)sinax (b)
provided f(y) satisfies the equation

4 2
gy—{—mz gy—{%—a“fzo (©)

The solution to Eq. (¢) is
fO)=C, coshay + C, sinhoy + Cyycoshay + Cyysinh oy (d)
To determine C,, C,, C5, and C,, the following four boundary conditions are used:
At y=20: O, = —q,, Sin ox; e, =0 (e)

8v_0 ()

At y=D: e, =0; ==
X

where q,, is the amplitude of the stress at the interface resulting from deformation of
the compression facing. Expressing the stresses, hence the strain ¢,, in terms of the
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Figure ES-6.1

Airy stress function, we may employ Egs. (e) and (f) to determine the constants C,
C,, Cy, and C,. The resulting stress function F is

F(x,y) = q,;, sin ooc[ cosh oy — Y _sinh ay

o2 2(1 —v)
—[(1 4+ v)* + sinh? B(—6 + 8v + 6v* — 8+*)]
ycoshay

sinhory — [o® sinh® B3 — v — 4v?)] —} (g)

o
2T =WA 21— v)A

in which A = —a[(1 + v) + (3 — v — 4v?) sinh B cosh f], and f = aD.

Problem Set 5-6

1. The skewed plate of unit thickness is loaded by uniformly distributed stresses S| and S,
applied perpendicularly to the sides of the plate (see Fig. P5-6.1).
(a) Determine all conditions of equilibrium for the plate in terms of S}, S, @, b, and 0.
(b) For 8 = 90°, derive an expression for the elongation of the diagonal AC under the
action of §; and S,. Assume that the material is homogeneous, isotropic, and linearly
elastic, and that the displacements are small.

2. In Fig. P5-6.1, let S; and S, be applied so that they are directed parallel to the edges
AB(DC) and AD(BC) of the skewed plate. Assuming that the plate is elastic, derive
expressions for the principal stresses and the principal strains in terms of S, S5, a, b, 6, E,
and v, where E and v denote Young’s modulus and Poisson’s ratio, respectively.

3. Let isotropic elastic material in the (x, y) plane be subjected to the stress components
g, =0,0,=0,17,=1 Let u=v=0=0 for x=y =0, where (u, v) denote (x,y)
displacement components and « denotes volumetric rotation.

(a) Show that the circle x* 4+ )y? = a® is deformed into an ellipse.

(b) For the case t = 0, show that the major and minor axes of the ellipse coincide with
the (x, ) axes, and express their lengths in terms of @ and the elastic properties of the
material.
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RENERE

Figure P5-6.1

4. For the isotropic, homogeneous, and elastic cantilever beam shown in Fig. P5-6.4, the
stresses are given by

P P
ax=7(L—x)y, rxyzﬂ(yz—cl), 0,=0

where P, I, L, and ¢ are constants.

}'
%,
Zi c |
7, Y x
é_ A +
%1 ¥ P
~ L
Z

Figure P5-6.4

(a) Verify that these stresses satisfy equilibrium and compatibility conditions for plane
stress.

(b) Determine the strains, hence the displacements u and v, as functions of x and y. The
boundary conditions are for x = y = 0, u = v = 0, and an infinitesimal line segment
originally in the y direction does not rotate.

5. The rectangular plate shown in Fig. P5-6.5 is very thin in the z direction and has a length
in the %x directions that is very large compared to 2a. The plate is made of a nonlinear
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elastic isotropic homogeneous material whose stress—strain relations are
¢, =Ao} —Bo,, ¢, =Ao, — Bo}

where 4 and B are known constants. The plate is subjected to angular velocity w about the
x axis. The mass density of the plate is p. Assume that 1, =u=X =9/0x=0.
Determine the stresses ¢, and o, and the displacement v as functions of y.

y

|
z‘!’ ‘La (

Figure P5-6.5

6. A narrow uniform bar of density p and length 24 is rotating with an angular velocity @
about an axis perpendicular to the bar through its center. Neglecting gravity effects and
assuming linear elastic behavior, determine the increase in length of the bar resulting from
the rotation.

7. Assume the plate of Prob. 5 is linearly elastic. Determine the stress components o,, o, and
the displacement component v as functions of y.

8. Consider the equations of linear elasticity of a homogeneous isotropic body. For example,
the equations of motion are

%u 8*u %u
1+ G o B _ B
(4+G) dx, dxg +G ax, ax, P e

For the case of static equilibrium, assume that u, is representable in the form

2Gu, = %
ox,

where ¢ is a scalar function of rectangular Cartesian coordinates (x;, x,, x3).

(a) Derive the defining equation for ¢.

(b) In terms of ¢, derive expressions for the volumetric strain (dilatation) e, the strain
tensor (small displacement) €,g, and the stress tensor gyp.

(¢) Let F = A(x? — y*) + 2Bxy be an Airy stress function, where (4, B) are constants and
(x, y) are plane rectangular Cartesian coordinates. Determine the problem solved by
this function F for the plane rectangular region —a <x <a, —b <y < b.
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9. The thin homogeneous plane strip of width 2/ extends a great distance in the x direction
Fig. P5-6.9. The plate is rigidly restrained by the fixed walls at y = +h. The plate is
loaded by gravity in the —y direction. The density of the plate is p. Assume
8/dx = u = 7, = X = 0. The plate is made of a material whose stress—strain relations are

[ =Aai — Baﬁ, € = Aoi - Baﬁ, Vo =C1yy

where 4, B, and C are known constants. Determine formulas for o, 0y and v as functions
of y and the known constants 4, B, C, p, g, and A.

v
e

Figure P5-6.9

10. A flat strip is supported at one end (x = 0, Fig. P5-6.10) and hangs in a gravity field of
acceleration g. The mass density of the strip is p. Let the thickness of the strip be 1 unit.

LI ////W//// /),

X
R

Figure P5-6.10
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Assume a state of plane stress relative to the (x, y) plane.

(a) Consider the equilibrium of the part of the bar from x = x to x = L. Write expressions
for the body forces X, Y and for the net force acting at section x.

(b) Assume the simplest possible stress distribution in the bar and derive an expression
for the normal stress a,.

(c) By the semi-inverse method, determine whether equations of elasticity are satisfied by
the results of parts (b) and (a).

(d) Derive explicit expressions for the (x, y) displacement components (u, v) in terms of
properties of the bar and (x,y). Let u = v =0u/dy =0atx =y =0.

5-7 Polynomial Solutions of Two-Dimensional Problems in
Rectangular Cartesian Coordinates

For plane elasticity with constant body forces or with body forces derivable from a
potential function, the compatibility relations reduce to the following single equation
in terms of a stress function /' (for simply connected regions):

V2VF =0 (5-7.1)

where for plane rectangular Cartesian coordinates (x, y),

* P
Vie 4+ — 5-7.2
ax? + ay? ( )
For zero body force, the stress components o,, 0,, t,, are related to F by the
equations
FF &*F FF
Oy = 7>, 0, =77 Ty = — (5-7.3)
o2 Yo o v ox oy

In the absence of body forces, Egs. (5-7.3) automatically satisfy equilibrium [Egs.
(5-2.11)]. Accordingly, any solution to Eq. (5-7.1) represents the solution of a certain
problem of plane elasticity. For example, any of the terms of Eq. (5-4.13) represents
a solution to Eq. (5-7.1). Hence, Eq. (5-4.13) represents a set of solutions of the
problem of plane elasticity.

If the stress function F is taken in the form of a polynomial in x and y, we note
[see Egs. (5-7.3)] that nontrivial (nonzero) stress components are obtained only for a
polynomial of second degree or higher in x and y. Furthermore, Eq. (5-7.1) is
satisfied identically by polynomials of third degree in x and y. For polynomials of
degree higher than three, Eq. (5-7.1) requires the coefficients of all terms of degree
higher than three to satisfy a set of » — 3 auxiliary conditions, where » is the degree
of the polynomial.
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For discontinuous loads on boundaries, the polynomial method has severe
theoretical limitations, as discontinuous boundary conditions are not representable
by polynomials. For continuously varying loads, however, the polynomial method
seems to be unlimited theoretically, although in practice the computations may
quickly become prohibitive if boundary conditions are to be precisely satisfied.
Furthermore, because the computations soon become laborious in any case, the
polynomial method requires a systematic approach. One such approach has been
proposed by Neou (1957).

Method of Neou. The method proposed by C. Y. Neou (1957) systematically
reduces the Airy stress function F expressed in a general doubly infinite power series
to the desirable polynomial form for special cases. The method proceeds as follows:
Let

o0 o0
m=0 n=0
where m,n=20,1,2,..., and 4,,, are undetermined coefficients that may be

arranged in the following rectangular array:

Asg Ay Az Asy Asg - (5-7.3)

= 3 S n(n— DAy (5-7.6)

8

0, = 3 3 mim — 1A,y (5-7.7)

m=2 n=0

(S 2 ]

Ty =— 3 > mnd, X"y (5-7.8)

m=1 n=1

Because 4y, 4y, and 4,y do not occur in Egs. (5-7.6), (5-7.7), and (5-7.8), they may
be omitted from Eq. (5-7.5).
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Substitution of Eq. (5-7.4) into Eq. (5-7.1) yields

55 mlm — D — Dm — 3474,

m=4 n=0
123 3 mm — Dn(n — 1" 2y24,,,
m=2 n=2
+ i f n(n — D(n = 2)(n — 3™y %4, =0 (5-7.9)
m=0n=4

Collecting similar powers of x and y and writing Eq. (5-7.9) under one summation
sign, we obtain

S 3 [(m + 2)(m + Dmim — DAy, 5., + 2m(m — Dnn — 1A,

m=2 n=2

+(n+2)(n+ Dun — DA,_g ™22 =0 (5-7.10)
Because Eq. (5-7.10) must be satisfied for all values of x and y,

(m 4 2)(m + Dym(m — )A4,,5 np + 2m(m — Dn(n — DA,
F(+2)n+ Dnn— DAy g, =0 (5-7.11)

Equation (5-7.11) establishes an interrelation among any three alternate coefficients
in the diagonals of Eq. (5-7.5), running from lower left to upper right. For example,
for m =2 and n = 2, Eq. (5-7.11) yields

3A40 +A22 + 3A04 = 0

Similarly, other relations between the 4,,, may be established by Eq. (5-7.11).

In the manner outlined above, the plane problem of elasticity with continuous
boundary stress is reduced to the determination of 4,,, [see Eqs. (5-7.4) and (5-7.5)]
from the interdependence relations [Eq. (5-7.11)] and the prescribed boundary
conditions.

Alternatively, the plane problem of elasticity may be solved by more general
techniques, such as transform methods (Milne-Thompson, 1942; Stevenson, 1943;
Green, 1945; Sneddon, 1995) or by methods of complex variables (Muskhelishvili,
1975).

Example 5-7.1. Stress Function Compatibility and Stresses. A prismatic cantile-
ver beam has a length L, a rectangular cross section of unit thickness, and a depth 2¢.
At its unsupported (free) end it is subjected to an axial tensile load P, applied at the
centroid of the cross section and a vertical load P, parallel to the depth dimension
2c. By the method of Neou, an engineer develops the following formula for the
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corresponding Airy stress function:

1

F = -GPpy = Py /e + Py?) @
where x, y are coordinates along the beam and along the depth direction, respec-
tively, with origin at the centroid of the cross section of the free end. We wish to
verify the correctness of Eq. (a).

To check the compatibility, we must ensure that F' given by Eq. (a) satisfies Eq.
(5-7.1). Substitution of Eq. (a) into Eq. (5-7.1) verifies the result V2V2F = 0. Thus,
F is a valid stress function. Next, we must examine the boundary conditions at the
unsupported (free) end x = 0. By Egs. (5-7.3) we find

o = *F Py 3Py
T 2 263

FF
O'y:—ax—zzo (b)
L __BF_ 3PE@ )
P dy 473

At the free end x = 0, the stress components must satisfy the conditions

J (% dy = Pl
- (c)

Substitution of Egs. (b) into Eq. (c) verifies that Eqs. (c) are satisfied. At the
supported end of the beam, the support at x = L must exert stress components o,
7,, on the beam, as given by Eq. (b), for the solution to be valid throughout the
beam.

Problem Set 5-7

1. Determine the interrelations of 4,,, [Eq. (5-7.11)]for(m =4,n =2),(m = 3,n = 3) and
(m=2,n=4).

2. By the method of Neou, derive a polynomial in x and y for the Airy stress function F for
the cantilever beam loaded as shown in Fig. P5-7.2. Hence, derive formulas for the stress
components 6., g,, T,,. What stress boundary conditions exist at x = L? Discuss the
application of Saint-Venant’s principle to this problem (see Section 4-15 in Chapter 4).

3. By the method of Neou, derive a polynomial in x and y for the Airy stress function F for

the beam loaded as shown in Fig. P5-7.3. Hence, derive formulas for the stress
components o,, 6,, T,,. Discuss the application of Saint-Venant’s principle to this
problem (see Section 4-15).
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Uniform load p, force per unit length
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Figure P5-7.2

Uniform load p, force per unit length
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Figure P5-7.3

4. A cantilever beam is loaded as shown in Fig. P5-7.4.
(a) Derive expressions for the stresses in the beam using the stress function

x3 x3y xyS x3y3 xyﬁ
¢—C|xy+C2 g+C3 ?+C4 —6“+C5 T+C6 %

At the boundary x = 0 the solution is to satisfy the condition that the resultant force
system vanishes (that is, F, = F,, = M, = 0). What stress boundary conditions exist

at x = L?

Load = (p/L)x

Yy

L
Figure P5-7.4
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(b) Derive expressions for the displacement components « and v, assuming that the beam
is in a state of plane stress and that it is fixed at the left end so that

ou
u(L, 0) = »(L, 0) = 0, —(Z,0=0
dy
5. The Airy function F = Ax>y generates a solution for a plane-strain problem with zero
body forces. Is this an exact three-dimensional solution? Explain. Determine the stresses
and displacements by any valid procedure (Section 5-6).

6. A long prismatic dam is subjected to water pressure that increases linearly with depth. The
dam has thickness 2b and height 4 (Fig. P5-7.6). Formulate the stress-determination
problem as a well-posed plane problem. State whether the problem is plain strain or
generalized plane stress. Relax the boundary conditions at x = 0 and x = 4 to require
only restrictions on the resultant force system. Solve the problem using the stress function

F = Ay + 4,x° + Ay + A + 45(5°)° — 307°)

X
Figure P5-7.6

7. By the method of Neou, the Airy stress function

p 2 p a
F=—(5a—2—3)y3+ PPy Py

60a 4043 40L 20al
P ,s_P _xz __xz P
walY TiF T ¥+ 12L
P P
ﬁ*} 24a3L 24
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is obtained for a rectangular beam supported by end shear load and subjected to a
triangular load as shown in Fig. P5-7.7. Discuss the validity of the solution.

y
Figure P5-7.7
8. The cantilever beam shown in Fig. P5-7.8 is subjected to a distributed shear stress on the
upper face. Assume the stress function for the problem to be of the form
F=C* + Gy + Gyt + Cup* + C + Cexly + Cry? + Cpx?y?
The boundary conditions are
at y= —h, Ty =0,=0

at y=+h, ‘cxy:——]—, g, =0

At the free end, the resultant forces and moment are zero. Determine the eight constants
C,, Gy, ..., Gy

T = 19(x/l)

P\ . = PEP—«:q

-

A
4
Y

l
Figure P5-7.8

9. Consider the polynomial F(x,y) = C;x° + Cyx'y + G337 + Cpy + Csxp* + Cy°,
where (x, y) are plane rectangular Cartesian coordinates and C;, C,, ..., Cq are constants.

(a) Determine the conditions for which F(x, y) is an Airy stress function (that is, for
which F' is biharmonic).
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(b) Derive formulas for the corresponding stress components. Are they compatible?

(¢) Let C, = C; = C, = C¢ = 1. Specialize the stress formulas accordingly.

(d) Determine the boundary value stress problem for which F(x, y) represents a solution
for an isotropic homogeneous elastic medium in the region R bounded by 0 <x < 1,
0 <y < 1; that is, determine the boundary stresses that act on the region R.

10. The Airy stress function,
F =A%+ By + O + Dy’ + Ex%° (a)

where 4, B, ..., E are constants, can be used to get an approximate plane stress solution
for a cantilever beam of unit width, length L, and depth 2c¢, subject to a uniform pressure ¢
(force/length) on its upper surface. The coordinates (x, y) have origin on the unsupported
(free) end at the centroid of the end cross section, with x directed along the axis of the
beam and y directed upward.

(a) Determine the requirements on 4, B, ..., E so that F(x, y) is biharmonic.
(b) Determine the constants 4, B, ..., E so that the boundary conditions of the problem

are satisfied (pressure g for y = c; zero net force and net moment on the free end
x=0).

5-8 Plane Elasticity in Terms of Displacement Components

In many problems it is convenient to seek solutions in terms of the displacement
components. Accordingly, in this section we present equations of plane elasticity
relative to the (x, y) plane in terms of (x, y) displacement components (u, v). We
consider the case of plane stress, the results for plane strain being obtained in an
analogous manner. We employ the approximations of small displacements.

In terms of (x, y) Cartesian coordinates, the strain components ¢,, ¢, T,, in terms
of (x, y) displacement components (u, v) are

ou o ou Jv
_ou _w o 5-8.1
“Fu YTy PTytk (5-8.)

Hence, substitution of Egs. (5-8.1) into Eqgs. (5-3.10) yields the stress-displacement
relations

E [du v
- = ~Z_qQ
T =1 ) [3 +v ( +v)kT]

% =1 fvz l:v %—i_%_ (1+ v)kT] (5-8.2)

__E (w )\ _ (o
fxy—m@*‘a;)“ (wa)
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Equations (5-2.11) and (5-8.2) yield (in the absence of body forces and for variable
modulus of elasticity E)

1 0F
uxx"’%(l _V)uyy_i_%(l +V)ny+(ux+v y)E a
18E 1 +v ¥EKT)
Ew E o

+%(1 — V), + vy)

- (5-8.3)
34 Vg +3(1 =V + 0 + 51— )ty +0) = o

1 9E 1+ v &EKT)
+(“y+"“x)E i

E ¥

where subscripts (x,y) on (u,v) denote partial derivatives. For E = constant,
OFE/ox = dE/dy = 0.
Similarly, Egs. (5-8.1), (5-3.8), and (5-2.11) yield for plane strain

1 oF
(1 —v)u,, +%(1 = 2v)u,, +%vxy +[(1 - v)u, + vvy]E ™
1 9E 1+ v o(FkT)
l —_— —_—— =
+5(1 — 2v)(u, + UX)E % z P
(5-8.4)
1 oF

1 1
Sy, +5(1=2v)v, + (1 =)o, +3(1 = 2v)(y, +UX)E ™

1 3E _ 1+v d(EKT)
Ed E dy

+ [+ (1 =)o)

The solution to Egs. (5-8.3) or (5-8.4) subject to appropriate boundary conditions
constitutes the solution of the plane problem of elasticity. Ordinarily, exact solutions
to these equations are not readily achieved. Then we may resort to approximate
numerical methods. For certain problems the concept of a displacement potential
function may be useful (see Example 5-4.1).

Problem Set 5-8

1. Consider the small-displacement plane elasticity problem of plane stress relative to the
(x,y) plane. Express the equilibrium equations in terms of (u, v), the (x, y) displacement
components, including the effects of temperature T(x,y), and letting the modulus of
elasticity £ be dependent on (x, ). Include body forces.

2. A state of plane strain relative to the (x, y) plane is defined by u = u(x, y), v = v(x, y),
w = 0. The strain energy density U, of a certain crystal undergoing plane strain is given by

Uy = %(bnf)zc + bzzﬁi + bas%zcy + 2b156,6;, + 2b)3¢, 7, + 2b53€,7,,)
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where by, i,j=1,2,3 are elastic coefficients. For small-displacement theory, derive the
differential equations of equilibrium in terms of (u, v) for plane strain of the crystal,

including the effects of body forces.

5-9 Plane Elasticity Relative to Oblique Coordinate Axes

In certain classes of plane problems, it is convenient to employ elasticity equations
relative to oblique coordinate axes. Accordingly, consider oblique coordinates (£, #7)
with axis £ coincident with axis x of rectangular Cartesian axes (x, ) and axis #
forming angle 8 relative to axes £ (Fig. 5-9.1). Hence, a typical point P in a region
may be located by the coordinates (&, #) or (x, y), where

x=<¢&+ncosh, y=mnsinf (5-9.1)
or
& =x—ycoth, n=y csch (5-9.2)

Under a deformation, the point P goes into the point P* under displacement
components (u, v) relative to axes (x, y) or (U, V) relative to axes (&, ), where

u=U+ Vcosb, v="Vsinf (5-9.3)
or

U =u—wvcoth, V=uvcsch (5-9.49)
We consider u = u(x, y), v=v(x,y) and U = U(&, n), V =V (&, n).

y

Figure 5-9.1
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For small-displacement theory, we obtain from Egs. (2B-13) in Chapter 2,
discarding quadratic terms (and letting x, =x, x, =y, y; = &, y, =1, etc.) the
strain components (¢, €,, 7;,) relative to axes (£, ) as

U 3V
€ = é % —cos 6
U
=—+—cosf -9,
¢y on + an cos (5-9.5)
E)V_}_aU+ 8U+8V cos 0
Yen = 9 9E

Also, by the chain rule of partial differentiation and Egs. (5-9.3), we have for the

strain components (¢, €, ¥y,)
. ou JoU + 14 0
=—=—+-—,cos
Tk 9E g’

v vV oV

ou v U v v U
— — —cos 260 — —— ) cotf 5-9.
Vay = +8x (3’7 5 cos )CS00+<817 8é)co (5-9.6)

For 8 = n/2, Eqgs. (5-9.5) and (5-9.6) reduce to the usual results for orthogonal axes.
By Eqgs. (5-9.5) and (5-9.6), we obtain

€ = Ef
€ = € cot? 0+ €y csc’ — ey COLBcsc O (5-9.7)
Vxy = Vey €8C 8 — 2¢; cot @

We define stress components (o, 6, T, T,¢) relative to axes (&, i) by consider-
ing an element with sides coincident with (£, n) coordinates lines (Fig. 5-9.2; see
also Problem 3-8.4 in Chapter 3). Hence, considering equilibrium of forces and
moments as for the rectangular Cartesian element, we obtain the equilibrium

equations
do. ot ot da
el T 8 ( e +——)cos9 =0

] o
a1 dao
n n
——+—=0 5-9.8
% o (5-9.8)
Ten = Tye

For 6 = n/2, Egs. (5-9.8) reduce to the usual equation of equilibrium relative to
orthogonal plane axes (x, y).

Relations between stress components (g,, & 0y, T,,) defined relative to axes (x, y)
and (6¢, 0,, T¢, 7,¢) defined relative to axes (£, ) may be derived by considering the
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o, + (30,/3n)én
Tt (ar"t/an)én

Ten rey + (37, /0E)BE
g
‘ o o; + (0, /0F)5¢
o 5
/ 3
Tne
a"

y n

X,

Figure 5-9.2

equilibrium of appropriate elements. Accordingly, by the equilibrium conditions for
the elements shown in Fig. 5-9.3, we obtain

0z = 0,sinf — 21,,cos 6 + o, cos O cot 0
o, = a,cscl (5-9.9)

Tey = Tyg = Ty — 0, COLH
Substitution of Egs. (5-9.7) into Eqgs. (5-3.8) yields for plane strain

o, =K[(1 —v+vcot? O)e; + ve, csc? 0 — Vye, €scfcot O — (1 + v)kT]
o, = Ki[(v + cot® 6 — v cot? Oe; + (1 —v)e, csc? 6 (5-9.10)
— (1 = v)yg esclcotd — (1 + v)kT]

1—2v
Ty = K [—2—))5,1 csc — (1 — 2v)e; cot 0]
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Figure 5-9.3

where

E

Hence, substitution of Egs. (5-9.10) into Eqs. (5-9.9) yields the stress—strain
relations for plane strain states relative to coordinate axes (&, 7). Thus, we find

or sin® 0 = K,[(1 — v)e: + (cos? B — v cos 20)e,
= (1 = v)yg, cos 0 — (1 + v)AT sin® 0]
o, sin® 0 = K,[(cos? § — vcos 20)¢; + (1 —v)e,
(5-9.12)
= (1 = v)yg, cos O — (1 + v)kT sin” 0]
Ty sin’ 0= K [—(1 = v)(e; +¢,) + 1 (1 — 2v + cos® O)y,,

+ (1 4 v)kT sin® 0 cos 6]
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Similarly, for plane stress [Egs. (5-3.10)] we obtain
o; sin® @ = Kyle, + (cos® @ + vsin? 0)e, — e, cos O
— (1 4 v)kT sin’ 6]

o, sin® 6 = K;[(cos? 8 + v sin’ O)e: + €, — 7y cOs O

(5-9.13)
— (1 + v)kT sin’ 6]
Tey sin® 0 = Ky[—(e +¢€,) cos 0 + %(1 + cos® 6 — vsin® )¢,
+ (1 + v)kT sin® O cos 6]
where
E
K= (5-9.14)

The preceding equations find application in cases where orthogonal plane axes do
not coincide with the boundary curves of the region, for example, in paratlelogram
regions such as swept-back airplane wings (Fig. 5-9.2). A general development for
the theory of shells in nonorthogonal coordinates has been presented by Langhaar
(1961).

APPENDIX 5A PLANE ELASTICITY WITH COUPLE STRESSES

5A-1 Introduction

The basic distinction between the classical theory of stress and the theory of stress
including couple stresses lies in the nature of the assumed interaction of the material
on two sides of a surface element. In the classical theory, it is assumed that the action
of the material on one side of the surface upon the material on the other side of the
surface is equipollent to a force (see Section 3-1 and Fig. 3-1.1 in Chapter 3). In
couple-stress theory, the interaction is assumed to be equipollent to a force and a
couple (stress couple). Further refinement is also admitted in the nature of assumed
body couples (analogous to body forces; see Section 3-8). The couple stresses are
taken to be moments per unit area, and the body couples are moments per unit
volume.

It has been noted that relatively few practical applications of couple-stress (body-
couple) theories are known (Schijve, 1966; Ellis and Smith, 1967; Koiter, 1968).
Nevertheless, the theory is less restrictive than the classical stress theory of Euler and
Cauchy. Furthermore, applications of the simplest theory of elasticity, in which
couple stresses are admitted, to problems in which the analogous classical solutions
yield locally unbounded stresses or deformations indicate that the results (for
instance, singularities) are changed, softened, or perhaps eliminated (Sternberg,
1968).
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Accordingly, in this appendix we give a brief discussion of the linear couple-
stress theory for the equilibrium of homogeneous isotropic elastic solids under the
conditions of plane strain. In particular, we follow the heuristic procedure employed
by Mindlin (Mindlin, 1963; Weitsman, 1965; Kaloni and Ariman, 1967). Finally,
although the whole of the classical theory of elasticity seems in agreement with the
assumption that couple stresses vanish, a study of the couple-stress theory may lead
to a critical reexamination of the basic concepts and principles of the mechanics of
continuum. In this last regard, one may read with profit the paper by Toupin (1964).

5A-2 Egquations of Equilibrium

For the plane problem relative to the (x, y) plane and in the absence of body forces
and couples, the stress equations of equilibrium for a medium that can support
couple stresses are, in (x, y) notation (see Fig. SA-2.1; see also Appendix 3B in
Chapter 3),

do, Ot
F =0—-"24+-2X=
2Fy ax + dy
at oo
ZFYZO"axE+§y:0 (5A-2.1)
om,, Bmyz

—I-‘cxy—Tyx:O

M, =0:
2 M, 8x+8y

Accordingly, for nonconstant couple stresses (dm,/dx # 0, dm,,/dy # 0), the shear
stresses are not necessarily equal (that is, 7,, # 7). Conversely, if (T Tyx) are equal
to zero, the couple stresses (m,,, m,,) need not vanish. Equations (5A-2.1) are the
Cosserat equations of equilibrium for plane problems with body forces and couples
omitted (Cosserat and Cosserat, 1909).

5A-3 Deformation in Couple-Stress Theory

We now treat the case of plane strain. As noted in Section 5-1, for plane strain
relative to the (x, ¥) plane, the displacement components (u, v) are functions of (x, y)
only and w = 0. Hence, for an isotropic elastic medium, the normal strains (e, ¢,)
are related to the normal stresses (g, 6,) by the first two of Egs. (5-1.7), and (¢,, €,)
are related to (u, v) by the first two of Egs. (5-1.4). Furthermore, the shear strain y,,
is related to (u,v) by the fourth of Egs. (5-1.4). However, because in general
T,y 7 Ty the third of Egs. (5-1.7) is no longer valid. Hence, following Mindlin
(1963), we resolve t,, and t,, into a symmetric part 7g and an antisymmetric part 7,
(see Section 1-25 in Chapter 1 and Fig. 5A-3.1):

g = %(Txy + Tyz)’ Ty = %(‘L’xy — Tyx) (5A-3.1)
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o, + (dg,/3y)by

y
4
’,“\Tn-+wmnﬁywy
~——t—>7,, + (031,,/3y)8y
7,y + (87,,/3x)8x
mxz
o, 5 o, + (d0,/0x)bx
¥y
my, + (dm,,[ox)bx
Ty
ox x
o Tyx<-——

Figure 5A-2.1

Accordingly, by Fig. 5A-3.1 and Section 2-8 in Chapter 2, the symmetric part tg
produces the shear strain

1 1
Vay ETS:

+
Evuw+gg (5A-3.2)

where G = E/[2(1 + v)] is the modulus of shear. Similarly, the antisymmetric part 7
produces a local rigid rotation (Fig. SA-3.1 and Section 2-13)

1 /ov ou

Furthermore, the antisymmetric part 7, is balanced by the couple stresses [Eq.
(5A-2.1)].

Considering the effect of the couple stresses on the element (éx, dy), Fig. 5A-3.2,
we note that m,,, m,, produce curvatures «,, and x,, related to the rotation w_ by the
equations

dw, dw,
R, —xéx = ox, R, E(Sy =0y
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Figure 5A-3.1

or

dw, dw,
K = 2= Ky = % (5A-3.4)

Analogous to the shearing strain y,, relation to the symmetric part 75 of 7, 7., we
assume that the curvatures (i, k,,) (deformations) are proportional to the stress
couples (m,,, m,,) (forces):

1 1

K

Ky, = @mxz’ yz = Emyz

(5A-3.5)

where B [see Eq. (5A-3.2)] is a modulus of curvature or bending, and the factor 4 is
taken for convenience in later calculations. We note that because the couple stresses
have the dimensions of couple per unit area or force per unit length and curvature is
the reciprocal of length, the modulus B has the dimensions of force.

5A-4 Equations of Compatibility

Equations (5-1.4), (5A-3.3), and (5A-3.4) consist of five deformation quantities
(€45 €5 Vxy» Kizy K;) €xpressed in terms of two displacement components. By
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(0w, [3x)bx

w, + (9w, /dx)éx

m
x 5x
w, + (dw,/oy)by

Figure 5A-3.2
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elimination of the displacement components from Eqs. (5-1.4), we obtain the usual
equations of strain compatibility [Eq. (5-3.1)].
Similarly, elimination of the rotation w, from Egs. (5A-3.4) yields

oK 9K,
—Z == 5A-4.1
dy ax ( )

Now, by Egs. (5-1.4) and (5A-3.3), we find

lavxy e,
2 o dy

dw, 1 (821; 82u)

x 2 @_Bxay

ax 2 oy

axdy H?

do, 1[0 u d, 1 Iy,
ay 2

Hence, by Egs. (5A-3.4),

o Ly B

T2 W
(5A-4.2)

_¥% 10y

T T2 ey

Seemingly, we have obtained four compatibility relations [Eqgs. (5-3.1), (5A-4.1),
and (5A-4.2)]. However, we observe that Egs. (5-4.2) imply Eq. (5A-4.1). Hence, we
have the compatibility relations

Pe, Fe, ¥y,
»r w? axdy

oy _ e
Jy  ax
(5A-4.3)
1 3y, 0,
Ky =5  a
2 ax Ay
- de, 1 dpyy
T 2 oy

where only three relations are independent, as the second equation is implied by the
remaining three.
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Finally, we note that the four compatibility relations may be written in terms of
stress components (oy, 6, 7., T,,) and couple stresses (m,., m,,) by means of Eqgs.
(5A-3.2), (5A-3.5), and the first two of Egs. (5-1.7). Thus, we obtain

820x 320'), 2 82
T2 Tae Vet ) =g et )
om,,  om,;
dy

a d
my, = lz &(Txy + Tyx) - 212 a_y[ax - V(O’x + O'y)]

P 3
m,, =2 5oy — V(o + )l - 2 a—y(rxy +7,)

(5A-4.4)
where
V2 % N % (5A-4.5)
and
2 w _ g (5A-4.6)

where /2 is the ratio of the material constants, B and G. By the last two of Eqgs.
(5A-4.4), we note that large stress gradients may lead to large values of the couple
stresses (m,,, m,,) when I # 0. If I = 0, the material has relatively no resistance to
curvature effects (B/G = 0), Egs. (5A-3.5). Because the second of Egs. (5A-4.4) is
implied by the other three equations, only three of the four compatibility equations
are independent.

5A-5 Stress Functions for Plane Problems with Couple Stresses

Equation (5A-2.1) may be solved by means of stress functions in a manner
analogous to the solution of Egs. (5-4.1) by means of the Airy stress function
(Carlson, 1966).

According to the theory of total differentials (Section 1-19 in Chapter 1 and
Section 5-4), the first of Eqs. (SA-2.1) is a necessary and sufficient condition for the
existence of a function ¢ of (x, y) such that

_% __%¥

=% T = = (5A-5.1)
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and the second of Egs. (5A-2.1) yields in a similar manner

20 a0
O'y = a s Txy - — a—y (5A—52)

where 0 = 6(x, y). Furthermore, the second of Egs. (5A-4.4) admits a function
¥ = Y(x, y) such that

_ _W

;=2 ;= SA-5.3
me=ge M= (5A-5.3)

Substitution of Egs. (5A-5.1), (5A-5.2), and (5A-5.3) into the last of Egs. (5A-2.1)
yields
a (o d (o
— (X —[=—09)= A-5.
ax<8x+¢)+ay<8y 0) 0 (5A-5.4)

which in turn is a necessary and sufficient condition that the function H = H(x, y)
exists, such that

oy oH oy . oH
§+¢_ ay, 3};—9—-'—3 (SA'SS)
or
oH o H 3
¢ = LA P N (5A-5.6)

Ty o x| oy

Hence, substitution of Egs. (5A-5.6) into Egs. (5A-5.1) and (5A-5.2) yields
expressions for g, 0., T, Ty in terms of Y and H. Thus, we obtain the formulas

¥ byxs
FH Ry FH Py
Oy = 75— . 0, =75 +7
T2 axoy Yoot axdy
*H Py FPH Py
=—2=_2% = ey -5.7
Exy ax dy Oy Ty ox dy + a2 (5A-5.7)
a0
N ——
o Yy

where all components of stress and couple stress are expressed in terms of the two
stress functions // and . For § = 0, m,, = m,. = 0, and Egs. (5A-5.7) reduce to the
classical Airy stress function relations [Egs. (5-4.9) with V' = 0].

Differential Equations for H and 1. The remaining equations {Egs. (5A-4.4)]
of compatibility define the functions H and . Hence, substitution of the first four of
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Egs. (5A-5.7) into the first of Eqgs. (SA-4.4) yields
VV’H =V*H =0 (5A-5.8)

Thus, H is the Airy stress function of classical stress theory [see (Eq. 5-4.12)].
Finally, substitution of Eqgs. (5A-5.7) into the last two of Egs. (5A-4.4) yields

%(‘p — PVA) = =2(1 — v)I? a—ay(vm)

5A-5.9
i(w — PV3)) =2(1 — w)? 3(VZH) ( !
dy N ax

Accordingly the functions ¥ — 2V*y and 2(1 — v)[*V2H are conjugate harmonic
functions; that is, they satisfy the Cauchy—Riemann equations [see Egs. (5-5.3)]. By
Egs. (5A-5.9), we obtain, by differentiating the first of Egs. (5A-5.9) by x and the
second by y, and adding,

Vi — PV =0 (5A-5.10)

Similarly, differentiations with respect to y first and x yield Egs. (5A-5.8). Thus, the
defining equations for H and ¢ are Egs. (5A-5.8) and (5A-5.10). The theory of plane
strain with couple stresses is contained in Sections SA-2 through 5A-5. The theory
of plane stress may be derived in an analogous manner. In Appendix 6A, the plane
strain theory is applied to the problem of a circular hole in a field of uniform tension
as well as in a biaxial field of stress.

APPENDIX 5B PLANE THEORY OF ELASTICITY IN TERMS OF
COMPLEX VARIABLES

The material treated in Sections 5-5 and 5-6 is essential for the topics discussed in
this appendix.

5B-1 Airy Stress Function in Terms of Analytic Functions y/(z) and x(z)

It may be shown that the Airy (biharmonic) stress function F(x, y) may be expressed
in terms of two analytic functions of the complex variable z = x + iy (Muskhelish-
vili, 1975). By this result, we transform the plane theory of elasticity into complex
variable theory.

In Section 5-5 we introduced the analytic function Y(z) = g4, + iq, and noted that
F — xq; —yq, is harmonic, where i=+/—1, (g,,q,) are conjugate harmonic
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functions and F is the Airy (biharmonic) stress function. Hence, the Airy stress
function may be written in the forms [see Egs. (5-5.11), (5-5.12), and (5-5.13)]:

F=xq,+yq, +h
F = 2xq1 +h2 (SB-ll)
F=2yq,+hy

where h,, h,, h; are arbitrary harmonic functions in the plane region D.

By the appropriate combination of two analytic functions defined in D, we now
note that we may generate the Airy stress function in the form of the first of Egs.
(5B-1.1). To do this, we first introduce the analytic function

x(2) = p1 +ipy(2)

where (p,,p,) are conjugate harmomic functions. Next, we form the real part of
2y(z) + y(z), where Y(z) is defined by Eq. (5-5.6) and z = x — iy. Thus, we obtain

Re[zy/(2) + 1(2)] = Re[(x — iy)(q, + ig2) +pi +ip2]
=Xq +yq; + P (5B-1.2)
Accordingly, comparison of the first of Eqs. (5B-1.1) and Eq. (5B-1.2) yields
F = Re[zyi(2) + x(2)] (5B-1.3)

Alternatively, Eq. (5B-1.3) may be written more symmetrically by employing the
complex conjugations of y and y and noting that the sum of a complex function and
its conjugate yields a real function. Thus,

2Y(2) + (@) + 1(2) + 1) = 2xq, +yg, + 1)
Hence, we may write F in the form
2F = 2Y(2) + 29 (@) + 1(z) + 1) (5B-1.4)

Equations (5B-1.3) and (5B-1.4) express the Airy stress function F in terms of the
two analytic functions /(z) and y(z) and their complex conjugates. It is readily
shown that Eq. (5B-1.4) satisfies the condition V2V>F = 0.

5B-2 Displacement Components in Terms of Analytic Functions y(z)
and y(z)

For the case of plane stress, the (x, y) displacement components in terms of the Airy
stress function F and the complex conjugate harmonic functions (g,, ¢,) are given
by Eq. (5-6.8). By Eq. (5B-1.4), we obtain

0 =, 7~ ' TN

3_1; =@+ 2@ + ¥ + 2@ + (@ + 1 (2)]

ol (5B-2.1)
3 =3 VO T IO IO - A @ + /@)~ LG

where primes denote differentiation with respect to z.
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In developing the theory, it is expedient to express quantities in terms of
oF /ax + i(0F /dy). Hence, by Eq. (5B-1.2) we write

L % — V) + @)+ 7C) (5B-2.2)

Consequently, multiplication of the second of Eqs. (5-6.8) by i and addition to the
first of Eqs. (5-6.8) yields, with Eq. (§B-2.2),

2G(u + iv) = kY(z) — 29/ (2) — 7 @) (5B-2.3)

where for plane stress (also generalized plane stress)

3—-v
1+v

K= (plane strain) (5B-2.4)

In an analogous manner, we also obtain Eq. (5B-2.3) for the case of plane strain,
where for plane strain

k=3—4v (plane stress) (5B-2.5)

One may transform the expression for plane strain into the equivalent expression
for plane stress by the following substitutions:

l—v

1
(plane strain) — — (plane stress)
E E (5B-2.6)

v
) 1 trai —_ 1 tr
v (plane strain) — T (plane stress)

Equation (5B-2.3) is the fundamental displacement relation in the complex variable
theory of plane elasticity.

5B-3 Stress Components in Terms of y(z) and y(z)

Consider a line element 4B joining two points in a medium in the (x, ) plane, with
positive direction from A to B. Axes n, ¢ are normal and tangential respectively to AB
at point P. They form a right-handed coordinate system as do (x, y) (Fig. 5B-3.1).
Let the forces o, ds, o, ds act on the infinitesimal element ds, with positive sense
in the directions of positive (x, y), respectively. Hence, the stress components acting
on an element of the medium with sides dx, dy, ds (Fig. 5B-3.2) are o, Gys Try> Oes
6, For plane equilibrium of the element, we have (in the absence of body forces)

Y Fo=0,ds—o,dy+1,dx=0

ZFy:onyds+aydx—t@dy=0
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y
X
Figure 5B-3.1
or
Opx = 0,C08 0 — 7, 5in ¢ @
a
On = —0,sin6 + 7, cos 6
where
dy . dx
0=—, 0=— b
cos I sin s (b)

Expressing o,, 0,, and 7, in terms of the stress function F', we may write Eq. (a),
with Egs. (b), in the form

, _PFdy  ®PF dr_ 3 (0F\dr 9 g)dy
T ds  axdy ds ox\dy/)ds oy\dy/)ds
FF dx ®F dy 9 (9F\dx 8 (0F\dy

g, == ——— — = — — [ — | ——— | — | =
dx/ds dy\ox/)ds

Accordingly, we may write by the chain rule of differentiation

d (oF d (oF
_d (oF i 5B-3.1
Tnx ds(ay)’ Tny ds(@x) (5B-3.1)
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Y B

O

Tey
) /

Figure 5B-3.2

Hence, multiplying the second of Egs. (5B-3.1) by i and adding it to the first of Egs.
(5B-3.1), we obtain

Oy + 00 _4 E—iE = ii §E+iaF
" W ds \ By x)  ds\ax dy

or (5B-3.2)

F aF
(0, +i0,,)ds = _id(i;_x +i E)

Substituting Eq. (5B-2.2) into Eq. (5B-3.2), we obtain
(O +i0,,) ds = —id[Y(2) + 2'(2) + 1 (@] (5B-3.3)

Now let ds have the direction of the y axis. Then ds = dy, dz =i dy, dz = —i dy,
Op = Oy, and a,, = 1,,. Then, Eq. (5B-3.3) becomes

(0, +it,) =¥ @ +¥' @) —20"(2) - 1 @) (5B-3.4)

Similarly, let ds have the direction of the x axis. Then ds = dx, dz = dx, dz = dx,
Op = —Ty, and 0,, = —a,, and Eq. (5B-3.3) becomes

(0, —ity) =¥/ @+ Y@+ 20" (2) + 1" (2) (5B-3.5)
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Adding and subtracting Eqgs. (5B-3.4) and (5B-3.5), we find

V2F =0, +0, = 2[y/(2) + (@] = 4Re[y/(2)]

(5B-3.6)
0, — 0, — 2ity, = 2[z2Y"(2) + 2" (x)]
or by complex conjugation we obtain from the second of Egs. (5B-3.6)
o, — 0, +2it,, = 22" () + 1" (2)] (5B-3.7)

where /(z) and y(z) are analytic functions.

Accordingly, Egs. (5B-2.3), (5B-3.6), and (5B-3.7) express the components (u, v)
of the displacement vector and the components (o,, g,, 7,,) of the stress tensor in
terms of analytic functions /(z) and x(z), inside region D occupied by the plane body
under consideration.

5B-4 Expressions for Resultant Force and Resultant Moment

Let (F,, F,) be the resultant force that acts on an arc 4B. Then, by Eqgs. (5B-3.2) and
(5B-3.3),

B

F.+iF,= | (o, +ic,)ds
¥ i
A

B —
= —iL dly(z) + 2y () + ¥ (2)]

= —ily @)+ @) + 11 (5B-4.1)

Similarly, the moment M with respect to origin 0 of coordinate system (x, y) of the
forces that act on 4B is (Fig. 5B-3.2)

M :J (X6, — y0,,) ds
4B
oF oF

=— xd | — +yd<—)]

L&) (5
_ [, fij OF dx | OF dy)
- ax yayA 4pldx ds oy ds

B

oF aF? dr oF oF
N VR L as=—|x & L FB 5B-4.2
[x ox i 3Y:|A+LB ds * [x ox A 3)’L+ ls ( )
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Yy
D
AB
X
Figure 5B-4.1
Also,
oF oF oF oF
4y —=Re|z[—-i=— B-4.
w7 y e[z(ax ’ ay)] (B4
Now, by Eq. (6B-2.1), we obtain
oF oF  ——  _ ,
—— i — =YD+ 2y (2) + 1 (2) (5B-4.4)
ax dy

Accordingly, by Egs. (5B-1.3), (5B-4.2), (5B-4.3) and (5B-4.4), the expression for
M may be written

M = Re[x(z) — zx'(2) — 22y (2)13 (5B-4.5)

Equations (5B-4.1) and (5B-4.5) represent boundary conditions for resultant force
and moment in terms of the analytic functions Y(z) and x(z).

Because we have assumed that region D is simply connected, the function (z)
and y(z) are single-valued. Hence, if points 4 and B coincide (Fig. 5B-4.1), the curve
AB is closed, and the values of ¢ and y are the same at points 4 and B. Hence, if
A =B, Eqgs. (5B-4.1) and (5B-4.5) yield F, =F, =M =0. Thus, for simply
connected plane regions, the external forces acting on any part of the region
contained inside a closed contour AB is statically equivalent to zero.

5B-5 Mathematical Form of Functions i/(z) and y(z)

In this section we consider the degree of arbitrariness of the functions y, y in the
cases when (a) the state of stress is given and (b) the displacement field is specified.
It is convenient to treat these cases separately. Because y(z) occurs in the stress and
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displacement relations only in the forms y'(z) and y”(z), it is expedient to define a
function ¢(z) such that

X)) = ¢(2) (5B-5.1)

Case A. Stress State Given. By Eqgs. (5B-5.1), (5B-3.6), and (5B-3.7),

a0, + 0, =2[y'(2) + ¥'(2)] = 4Re[Y/(2)]
o, — 0, — 2it, = 2["(@) + ¢ ()]

(5B-5.2)

To determine the nature of (z), ¢(z), we first note that for the simply connected
region D, ¥/(z), ¢(z) may be specified to within certain arbitrary complex numbers
without altering the stress distribution in region R. Thus, the stress quantities
6, +o0,, 0, — 0, + 2it,, may be expressed in terms of cither the functions (¢, ¢)
or the functions (y/,, ¢,), where

@) =¥ +icz+a
¢1(2) = D) +b

(5B-5.3)

where (a, b) are complex numbers and ¢ is a real constant. Equations (5B-5.3) follow
directly from substitution of ¥(z), ¢(z) and ,(2), ¢,(z) into Egs. (5B-5.2) and
equating the quantities so obtained (that is, requiring the same stresses for either set
of functions). Integration then yields Eqgs. (5B-5.3). In other words, if the state of
stress in D is specified, the analytic functions ¥, ¢ are determined to within a linear
function icz 4+ @ and a complex constant b, respectively.

Case B. Displacement Specified. Let us specify the displacement components
(u, v) in region D. By Eqs. (5B-5.1) and (5B-2.3), we find

2G(u + iv) = ky(z) — 2/ (z) — P(2)

1(@_%) 0+ +#K) (5B-5.4)

= 7 !
2\ox 9y E my ()

where o is the volumetric rotation and Im v/'(z) denotes the imaginary value of i/'(z),
that is,

, i, ——
Imy'(z) = — 5[!# (z) =y (@] (5B-5.5)
The second of Eqgs. (5B-5.4) follows from the fact that by the first of Eqs. (5B-5.4)

4Gu = k[Y() + Y @) — 2W'(2) — W' (@) — d(2) — $2)
4Gv = —ix[Y(z) — Y @] + i/ (2) — /(@) — $(2) + $(2)]

(5B-5.6)
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Because the stresses are determined uniquely, when the displacements are given,
we conclude that the extent of the arbitrariness in the functions ¥, ¢ can be no
greater than that exhibited by Eqs. (5B-5.3). Indeed, the requirement that the
functions (, ¢) and (¥, ¢,) yield the same displacements demands that

¢ =0, ka=2b (5B-5.7)

This restriction is more severe than that of Eq. (5B-5.3). Thus, if the displacements
(u, v) are prescribed in D, the function (z) is determined to within a complex
constant @ and the specification of a defines the constant b. Accordingly, the
functions y(z), ¢(z) are determined uniquely for a given state of stress, provided a, b,
c are chosen so that for the plane region D, the displacement and rotation are
specified to account for rigid-body motion. For example, we may specify the
displacement and rotation for some point—say, z;—in R. Then, for example, the
conditions

Y(zg) =0,  Imy'(z) =0,  ¢(z)=0 (5B-5.8)

are sufficient to determine the values of a, b, c. If the displacements are specified
¢ = 0, and we may choose a so that ¥(z,) = 0. Then, by Eq. (5B-5.7), b is defined.

Form of Functions \(z) and ¢(z). By the theory of analytic functions, we know
that in a simply connected region D, the analytic functions Y(z), ¢(z) are single
valued and may be represented in the power series (Krrok et al., 1983; Churchill et
al., 1989) over R:

Ve =3 a7
"~ (5B-5.9)
¢(Z) = ;)bnz"

If the region D is multiply connected, the functions y(z), ¢(z) may be muitivalued;
that is, they may undergo finite incremental changes in traversing a closed contour
defining the interior of D (Churchill et al., 1989). Consider for simplicity the doubly
connected region R (Fig. 5B-5.1). In circumscribing the boundary C,, let the
functions ¥(z) and ¢(z) receive the increments

AY(z) = 2ra

(5B-5.10)
Ad(z) = 2np



5B-5 MATHEMATICAL FORM OF FUNCTIONS i(z) AND x(z) 407

Figure 5B-5.1

where in general (x, ) are complex constants. This type of behavior is exhibited by
the function log(z —z,), where z, is a point inside the contour C;. Because
z — zy = pe'¥, we have, upon circumscribing C,,

Alelog (z = z,)] = [clog (pe NI "

= c[log p + log €”]|:¢"

p.0

= cllog p + i0]%¢" = i2mc (5B-5.11)

Hence, we may write
Yo(2) = ¥(2) — alog(z — zp)
$o(2) = ¢(z) — Blog(z — zp)

where Y/(2), ¢y(z) are analytic within the doubly connected region R, as within R,
Wo(z) and ¢ (z) are finite, differentiable, and single-valued. Consequently, we may
represent (z) and ¢(z) in the form

WU(2) = Yo(2) + alog (z — zp)
$(2) = Po(2) + Blog(z — z,)

(5B-5.12)

(5B-5.13)
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The requirement that the displacement u + iv be single valued demands that a
relation between the constants o and f exist. Thus, substitution of Eqs. (5B-5.13)
into the first of Eqs. (5B-5.4) has the result, with the requirement of single-
valued displacements, that the term xolog(z —z,) — flog(z —z,) vanishes in
circumscribing  C,. Hence, mnoting that Afxlog(z —z,)] =2mix and
A[B log (z — z,)] = —27if, we obtain the relation

kot +f=0 (5B-5.14)
Hence, Egs. (5B-5.13) become

Y(2) = hy(2) + alog (z — zo)

_ (5B-5.15)
P(z) = ¢o(2) — kalog(z — z)
Finally, we note that (x), ¢,(z) may be represented by the Laurent series
(Churchill et al., 1989)

W@ = 3 a—=)

o (5B-5.16)
ho(z) = Z by(z — Zo)n

n=—o00

as they are analytic in R. Generalization of these results for n-connected regions is
given by Muskhelishvili (1975, Chapter 5).

Transformation under Translation and Rotation of Rectilinear Coordi-
nate Axes. For a given state of stress in a plane region, translation of the origin of
rectilinear coordinate axes requires that 1/(z) remain invariant, whereas y(z) must be
modified to maintain the stress state. For a rotation of axes (x, y) into axes (x,y,)
through angle «, the functions (y, ) are given by

v =0, =10 (5B-5.17)

where { = ze™™ and (¥,, x,) are functions relative to axes (x,, y;), which play the
same role as (Y, y) relative to axes (x, y) (Muskhelishvili, 1975, p. 137).

5B-6 Plane Elasticity Boundary-Value Problems in Complex Form

As with the three-dimensional theory, we may state the following plane boundary-
value problems of elasticity (in the absence of body forces):
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1. Determine the states of stress and displacement in region R for given stresses
applied to the boundary B of region R.

2. Determine the states of stress and displacement in region R for given
displacement of the boundary B of region R.

The uniqueness of solutions of the above problems may be shown (Section 4-16 in
Chapter 4) for bounded displacement field and for stress fields that vanish at infinity
(Muskhelishvili, 1975).

For the first problem, the plane theory of elasticity is characterized by the
equation (in absence of body forces) (see Sections 5-1 and 5-2):

do.
ax ay
over R (5B-6.1)
ot, 0o, — 0
ax oy
Vs, + 6,) = 0} over R (5B-6.2)
Opy = O + T,m
on B (5B-6.3)

Opy = Tyl +0ym

In terms of the Airy stress function F, we may write these equations as follows
(Section 5-4):

Fr &F OF ,
=% BT T (5B-6.1)
VIV2F =0 (5B-6.2")
FF *F
O =L ———m
o2 ax dy
(5B-6.3")
FF +$F
0,y = ———I1+-—m
w oxdy  ax?
Noting the relations (Fig. 5B-6.1)
d d
l:cosO:»—X, m:sin():-——x (5B-6.4)
ds ds

we obtain by Egs. (5B-6.3") and (5B-6.4) and the chain rule of differentiation [see

Egs. (5B-3.1)]
d (oF d (oF
_ 4 - 4= 5B-6.
Tnx ds(By)’ Tny ds(&x) (58-6.5)
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Figure 5B-6.1

Integration of Egs. (5B-6.5) yields

oF

= —La,,y ds = fi(s) + C,

o (5B-6.6)
5| ma=r0+a,

where f,(s), f,(s) are functions of s on boundary B and (C,, C,) are arbitrary
constants. Thus, Egs. (5B-6.6) define the derivatives of F to within arbitrary
constants.

Because Eqs. (5B-6.6) are equivalent to Eqs. (5B-6.3), the first fundamental
problem of the plane theory of elasticity may be written in the form

VIV2F =VAF =0 over R

oF

™ =fils) +C, (5B-6.7)
on C

JaF
) =f() + G
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where f|, f, are prescribed functions of s. By Egs. (5B-2.2), we may write the last
two of Eqs. (5B-6.7) in terms of i, y. Thus,

W(2) + 20 (2) + ¥ (2) = f,(s) + ify(s) + constant  on B (5B-6.8)

We recall that the first of Egs. (5B-6.7) is satisfied identically by Eq. (5B-1.3) [or Eq.
(5B-1.4)].

For the second fundamental problem, we require that u = g,(s), v = g,(s) on B,
where (g,, g,) are prescribed functions. Hence, for this problem we replace Eq.
(5B-6.8) by the boundary condition [see Eq. (5B-2.3)]

K(z) — 20'(z2) — ¥@) = 2G(g, +ig,) onB (5B-6.9)

We have noted the nature of the arbitrariness of functions ¢/, x in Section 5B-5. To
within this degree of arbitrariness for the simply connected region, the functions
and y are determined completely by Egs. (5B-6.8) and (5B-6.9) for the first and
second fundamental problems. For details of the mixed fundamental problem
(Section 4-15 in Chapter 4), refer to the literature (Muskhelishvili, 1975). For the
simply connected region, Eqs. (5B-6.8) [or Egs. (5B-6.9)] in conjunction with Egs.
(5B-5.9) [or Egs. (5B-5.13) and (5B-5.16) for the doubly connected region] serve to
define y/(z) and ¢(z), that is, to define the coefficients a,, b, [recall ¢ = ¥/'(z), Eq.
(5B-5.1)].

5B-7 Note on Conformal Transformation

Let z and { be two complex variables related by the equation
z=w({) (5B-7.1)

where w({) is an analytic function in some domain D in the w plane. Hence, Eq.
(5B-7.1) relates every point { in the w plane to some definite point in the z plane; that
18, Eq. (5B-7.1) defines a one-to-one correspondence between the points in the w
plane and the points in the z plane. Also, Eq. (5B-7.1) may be inverted to yield

{=f) (5B-7.2)

Because the points in the z plane cover some region R in the z plane (Fig. 5B-7.1),
we say that Eq. (5B-7.1) represents an invertible single-valued *“conformal
mapping” of region R into the region D (or conversely). The mapping is called
conformal because of the following property, which relations of the type of Eq.
(5B-7.1) possess where w({) is analytic: If in D two line elements emanate from
some point { and subtend angle 8, then the corresponding elements in R form the
same angle, with the sense of 0 maintained. The following discussion depends
heavily on topics treated in Churchill et al. (1989).
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Figure SB-7.1

Many of the solutions of plane problems of elasticity by the method of complex
variables rely heavily on the theorems relative to the unit circle. Thus, fundamental
to these solutions is the conformal mapping of a region R in the z plane into a unit
circle in the w plane. In particular, two cases are distinguished: (1) the transforma-
tion of a simply connected region R interior to a contour C, and (2) the transforma-
tion of the region R* exterior to a contour C (Fig. 5B-7.2).

By the theory of conformal mapping, the transformation (mapping)

2= Y el = w0 (5B-7.3)
k=0

transforms the interior region R (Fig. 5B-7.2) bounded by the simple contour C (that
is, a contour that consists of one closed curve that does not intersect itself) info the
unit circle. The arbitrary point z, can be transformed into an arbitrarily chosen point
in the unit circle (say, £ = = 0).

For the region R* outside contour C, the mapping

.

z=w({{) = e + an analytic function
o0
=Sy >l (5B-7.4)
k=0

transforms region R* (Fig. 5B-7.2) exterior to C into the unit circle.
In Eq. (5B-7.3), w/({), where prime denotes derivative with respect to {, has no
zero within the unit circle (as it is conformal); hence, w/({) has no zero in D.
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Equations (5B-7.3) and (5B-7.4) contain an infinite number of terms in general.
However, in practice often only a finite number of terms are used. Hence, instead of
transforming the actual region R (or R*) into the unit circle, an approximation R, of
R is employed. If an exact transformation w({) is unknown, the coefficients ¢, are
sometimes determined by methods of the approximate theory of conformal trans-

formations.

Example 5B-7.1. The mapping

¢ 2/3 dp
z=w({{) = —-aJ (1-p — =+ constant (a)
1 4
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where a is a real constant, transforms an equilateral triangle {Fig. (E5SB-7.1)] in the z
plane into a unit circle in the { plane. Noting by the binomial expansion that
(1-p)P=1-2p" +1p® —4p° + ..., and choosing the constant in Eq. (a)
properly, we find

z=w(C)=—a<%+%C2+4—1§C5+---> (b)

For the boundary of the unit circle, { = 1¢'. Thus, for the contour of region R, Eq.
(b) yields

Z:_a(e—i9+%62i9+%e5i0_+_‘__) (c)

Approximations R, to the equilateral triangle (region R) may be obtained by taking
2,3,4,... terms in Eq. (c). With three terms, a fairly good approximation to the
equilateral triangle is obtained.

Curvilinear Coordinates in the Plane. Because much of the complex variable
method relates to the conformal mapping of a given region R in the z plane into a
region D (unit circle) in the { plane, it is natural to introduce polar coordinates (r, 6)
in the { plane (see Chapter 6). Then, { = £ + in, where & = rcos 8, n = rsin 6 may
be written as { = re®. Hence,

z=x+iy = w() = wre?) (5B-7.5)

Accordingly, the circles » = constant and the radii 6 = constant in the { plane are
transformed into orthogonal curvilinear coordinate lines (a, b) in the z plane by Eq.
(5B-7.5) (see Section 1-20, Chapter 1), as z = w({) is a conformal transformation
(Fig. 5B-7.3). The tangents to the coordinate lines are denoted by the symbols 4, B
and form a base for the axes of the curvilinear coordinate system at point z,. Because
the transformation is conformal, the axes (4, B) are right-handed (conform to axes
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Figure SB-7.3

x, y) as a conformal transformation preserves the orientation of directions. The axis
A forms the angle o with respect to the x direction.

In the sequel we require expressions for the transformations of displacement
components (u, v), which are vectors. Accordingly, consider a vector V in the z plane
at the point z = w(re'’). By Fig. 5B-7.3 we find

Ve+iV, =V, + iVg)e” (5B-7.6)

Equation (5B-7.6) relates the components (¥, ¥, ) relative to the (x, y) axes to the
components (V,, Vp) relative to curvilinear coordinates (a, ). To express e* in
terms of the transformation z = w({), we note that if we consider a displacement dz
of the point z in the direction of the tangent 4, the corresponding point { (in D) will
undergo displacement d{ in the radial direction (8 = constant). Thus,

dz = e™|dz|, dl = &\d¢)
and, with Eq. (5B-7.5),
w_dz  WQQdl 5 W)

Tz T wrdd ¢ w)
WO

“r W

(5B-1.7)
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Equations (5B-7.6) and (5B-7.7) yield

W)
Vx+lVy_(VA+lVB);m

or

_¢wO

VA + lVB = e_ia(Vx + lVy) - ; IM/(C)l

(5B-7.8)

—ifl

where & = re= and w/({) are complex conjugates of { and w'({).

Problems

1. Let z=ccosh{, where z=x+1iy, { = ¢ +in. Derive the equations that define the
coordinate lines in the z plane that correspond to the coordinate lines ¢ = &, = constant,
1 = ny = constant in the { plane. Show that the coordinate lines form an orthogonal
system.

2. Let z = iacoth({/2), where z = x + iy, { = & + in. Repeat Problem 1.

5B-8 Plane Elasticity Formulas in Terms of Curvilinear Coordinates

To transform the stress components and the displacement components to curvilinear
coordinates (a, b), we must transform y/(z), x(z) into functions of ¢, that is, into
functions ¥({), x({), where z = w({).

Stress Components. Let 6,, 6,, 7., be defined as follows (Fig. 5B-8.1):

0, = normal stress component on curve ¢ = constant
0, = normal stress component on curve b = constant

T, = Tp, = shear component on both curves
By plane transformation laws of stress (Section 3-7 in Chapter 3), we obtain

0, =4%(0,+0,)+1(c, —0,)cos2a + 7, sin2a
TR ’ v (5B-8.1)
T4 = —3(0, — 6,)sin2a + 1,,, cos 2a

Letting o — o + 7/2, we obtain from the first of Eq. (5B-8.1)

0, =3(0, +0,) —3(0, — g,) cos 20 — 7, sin 2« (5B-8.2)
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X
Figure 5B-8.1
Hence, by Egs. (5B-8.1) and (5B-8.2), we find
6, +0,=0,+0, (5B-8.3)
0y — 04 + 2iT,, = €0, — 0, + 2i1,) (5B-8.4)
To obtain an expression for the term e?*, we note by Eq. (5B-7.7) that
e _CWOE _C wOr
2w wOw ()
2
— C_2 v (5B-8.5)
- w(0)
Thus, Egs. (5B-8.4) and (5B-8.5) yield
o, — 0, + 2it, = g; @(oy -0, +2it,,)
= w(0) (5B-8.6)

6, +0,=0,+0,
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To express a,, 6, in terms of {, we note that by Eqs. (5B-3.6) and (5B-7.5)

o,+0,= 2y (2) + V(2] = 2[—‘3% + ‘%((TC))] (5B-8.7)

where ¥, ({) = ¥(z). In a similar manner, we may express ¢, — ¢, + 2it,, in terms
cof .

Displacement Components. Let (u, v) denote the (x, y) components of displa-
cement (Fig. 5B-8.2). Let (u,, ;) denote the (a, b) components of displacement.
Then, by vector projections, we find

(u, + up) = e ™(u + iv) (5B-8.8)

where (u + iv) is expressed in terms of ¥ and y by Eq. (5B-2.3), which in turn may
be expressed in terms of {.

Equations (5B-8.6) and (5B-8.8) express the stress components and the displace-
ment components of plane elasticity in curvilinear plane coordinates in the z plane
(polar coordinates r, 6 in the { plane).

Figure 5B-8.2
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5B-9 Complex Variable Solution for Plane Region Bounded by Circle
in the z Plane

In this section we demonstrate the complex variable method for the case of a simply
connected circular region R in the z plane, with prescribed boundary stresses on the
circle C (Fig. 5B-9.1). The case of prescribed displacement on C may be treated in
an analogous manner. Although the example is elementary, the essential features of
the complex variable method are illustrated. (The more complicated problem of the
plane region with circular hole is treated in Section 6-10 of Chapter 6.)

Solution Relative 1o z. We take axes (x, y) with origin at the center of the circle
C. We consider the components of the boundary stress (6,,, 0,,) on C to be known,
continuous, and single-valued functions of o on C. Accordingly, by Egs. (5B-3.3)
and (5B-6.8), we have (with constant = 0)

[i®) +ifH(s) = iJ (0 +i0y) ds = iaJ (0,5 +i0,,) do (5B-9.1)
0 0
Overall equilibrium of region R requires
2n 2n
>'F.=a| o,da= aJ (6,,cosa — a,,sina) dou =0 (5B-9.2)
0 0
2r 2
Y.F,=a| o,do= aJ (o, sina + g,,cosa) du =0 (5B-9.3)
JO 0
21
d>My=al| o0,due=0 (5B-9.4)
0
y
ana.
%.r
1
a s
o =0 0
X
R b '
C
C
¢-plane
z-plane

Figure 5B-9.1
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Hence, (o,,,0,,) are periodic in « (with period 2n). Assuming (o,,,0,,) are
continuous, single-valued functions of « (Dirichlet conditions; Krrok et al., 1983),
we may represent them (and hence 0,,, 0,,) in the form of convergent Fourier series.
Thus, we may express f; + if, in the known form

fitifh= Y 4™ (5B-9.5)

m=—00

where by Fourier series theory
1 2n »
A4, = HJ (fi +iHh)e™ du (5B-9.6)
27 0

By Section 5B-5 [Eq. (5B-5.9)], we have in R, |z| < a for analytic functions v, )’

VD =3 a7
o (5B-9.7)
X (z) = P(2) = ;}bnz"

where we have taken ¥(0) = 0. Assuming that the series of Egs. (5B-9.7) converge
in R and on C, we have by Eq. (5B-6.8) and (5B-9.7)

00 . .
Zananema + alaem
n=1

o0 R oo .
+ Z (n + 2)&n+2an+26—mu + Z bnaneﬂna

n=0 n=0
oo .
= Y A,™ (5B-9.8)
m=-00
where we note the formulas
z = qé”, Z=qe ™

™2
=1
I\ll

V@ =3 na?", @ =1 =

n

=
i
o
I
f=4

o0 _ 1 [e.¢] _ 2i
zY na, 7' =Y na,a"e "I
n=1 n=I1

=a,aé™ + Y (n+2)a,,,a" e ™ (5B-9.9)
1 . +
n—=
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Comparing like powers of e in Eq. (5B-9.8), we obtain

¢ a(a, + a,) = A, = real number n=1)

e a,=4, (n>1) (5B-9.10)

n

o=, (n+2)a a2 —}—a"l_) = A (n>0)
n+2 n n

Equations (5B-9.10) define all the coefficients a,, b, except a;. Only the real value
of a; is defined by the first of Egs. (5B-9.10), as a; + a, = Re(a,). However, this
condition is sufficient, because the imaginary part of y/'(z) may be chosen arbitrarily
for z = 0. For example, we may take Im /'(0) = 0 [Eq. (5B-5.8)]. Furthermore, the
constant A, has the physical significance that it is the average (mean) value of radial
load acting on the boundary C or R. This result follows from Egs. (5B-9.6) and
(5B-9.1). Thus, by Eq. (5B-9.6),

2m
214, = J (fi +ify)e ™ do
0

271 27
:J (ﬁcosoc+j”zsinoc)doc+iJ (focosa — f; sina) do
0 0
However, we note that by Eqs. (5B-9.2)—~(5B-9.4),

2n 2n
> M, :aJ O e doc:aJ (0, cOS® — 0, Sin 1) dot
0 0

27
—J (cosa df] + sina dfy)
0

Il

2m
—[f; cos o+ f; sino]§" + J (—fy sina + f; cos o) do
0

2n
ZJ (—fisina+ f,cosa) do = 0
0

and in a similar manner

27 21

G, dot = aJ (0, cOS®+ 0,,sIn0) do
0

ZF,:aJ

[}

2n
:J (ficosa+f, sina) da
0
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Hence,

a 2
= d 9
1 27TJ0 o, du (5B-9.11)

and 4, equals the mean value of the radial load.

Solution Relative to (. Alternatively, the solution may be derived in the { plane
(Fig. 5B-9.1). For example, the region R in the z plane may be transformed into the
unit circle D in the { plane by the mapping

z=w({{) =al (5B-9.12)
Hence, on the boundary C’,
{=€"=y
w(l) al , (5B-9.13)
W—;—C(—VOHC)

To write boundary conditions on C’, we require that /(z) and y'(z) be transformed
into functions of {. For this purpose, we remark that with the notation

Y1) = ¥(2) = Yw()]
$1(0) = ¢(0) = d[w(0)]

we have

_dy_dy©

= e =Y

V'@

Consequently, the boundary conditions [Eq. (5B-6.8)] in terms of {(= 1y on ()
become, with ¢(z) = ¥'(2),

)+ 2L TS 6@ =f + 5 (5B-9.14)
w(y)

or with Egs. (5B-9.13)

)+ W)+ E ) =1+ if (5B-9.15)
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With

00

Y=Y al",  6O=2bL" (5B-9.16)

n=0

the analysis proceeds as in the z plane [following Egs. (5B-9.7)]. Then substitution
of Y(z), ¢ [or ¥ (), ¢;({)] into expressions for o, +a,, 0, — 0, +2ity,
2G(u + iv) yields (x, y) components in the z plane (in the ¢ plane), provided ¥, ¢
are absolutely and uniformly convergent on the boundary circle |z| = a. If first
derivatives of a,,, g,y (or 6, 0,) satisfy Dirichlet conditions (Churchill et al.,
1989), this requirement is satisfied.

Problem Set 5B

1. Consider the problem of small deflections, plane thermoelasticity for which
G =V =V =0

(a) Derive an expression for ¢, in terms of stress components ¢, and ¢,, material

properties k (thermal coefficients of linear expansion) and £ (modulus of elasticity),
and temperature change 7 measured from an arbitrary zero.

(b) Assume the additional conditions that stress components o, = ¢, = 7,, = 0. Hence,
derive expressions for the strain components ¢, €, and 7,,,.

(c) Show that under the combined conditions of parts (a) and (b), the compatibility
conditions reduce to V2T = 0 for constant £ and %.

(d) Using the results of part (b), show that the rotation of a volume element in the xy plane
is

w, = dv/dx = —du/dy
Hence, show that
3¢ /0x = 3w, /0y, 9 /3y = —dw,/ox

where ¢ = (1 +v)kT. That is, show that ¢ and w, satisfy the Cauchy-Riemann
equations. (Consequently, the theory associated with the Cauchy-Riemann equations
may be applied to ¢’ and w,.)

2. Let z denote the complex variable z = x + iy, where (x,») denote plane rectangular
Cartesian coordinates. Let z = x — iy denote the complex conjugate of z.

(a) Show that the equilibrium equations of plane elasticity in the absence of body forces
may be transformed into the result (> = —1)

4 . a
& (Ux — 0y + 2”xy) + é(o—x + o-y) =0
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(b) Let the displacement s be given by s = u + iv where (1, v) denotes (x, y) displacement
components. Express ds/0z in terms / and derivatives of u, v relative to (x, y).

(¢) Noting that the equilibrium equation of part (a) is a necessary and sufficient condition
that there exists a function F(z, z) such that

oF
— =0,+0,

0z

E: O'.V — 0, —2[‘[/\,},

and expressing (g, 6,, T,,) in terms of (u, v), show for plane strain, employing the
results of part (b), that

4Gs = —F(z,2) + f(2)
where 2G(1 + v) = E. E = Young’s modulus, v = Poisson’s ratio.

(d) Compute the derivative ds/dz in terms of / and derivatives of (u, v) with respect to
(x, y). Hence, show that

, o oF
O'X+O'y—f(z)——40§—g—f(z)
as v ou
4A+G) —= 2i(A ———
(1+G) & = 0,40, +2i( +G)(ax ay)

where

A=vE/[(1+v)(1—2v)].

3. Show that the equation o, + 6, = 4RefY/'(z)] may be written in the form
o, + 0, + 4Eo/[(1 + v)(1 4+ x)] = 4/ (2)

where o is the volumetric rotation.
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