CHAPTER 6

PLANE ELASTICITY IN POLAR
COORDINATES

The use of polar coordinates is advantageous in problems involving boundaries
formed by circular arcs or radially straight lines. Furthermore, certain problems of
symmetry lend themselves well to polar coordinates. Accordingly, in this chapter we
express the basic plane-elasticity equations in polar coordinates.

6-1 Equilibrium Equations in Polar Coordinates

Consider an element of volume bounded by the polar coordinate lines (r, 8) and
(r +dr, 6 +d6) (Fig. 6-1.1). Let the thickness A of the element [dimension
perpendicular to the (x, y) plane] be a function of (r, 8). Let the element be subjected
to stress as shown (R and ® denote body forces per unit volume in the radial and
tangential directions, respectively). Because 46 is an infinitesimal angle, summations
of forces in the radial and tangential directions yield for equilibrium, assuming that
the thickness is sufficiently small compared to the in-plane dimensions so that
variations of radial and tangential stresses over the thickness can be neglected,
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Figure 6-1.1

Equations (6-1.1) are the equilibrium equations for plane elasticity in polar
coordinates. They are equivalent to Egs. (5-2.11) in Chapter 5. Alternatively, Eqs.
(6-1.1) may be derived by mathematically transforming Eqs. (5-2.11) from (x, y)
coordinates to (r, f) coordinates by tensor theory (see also Appendix 3A in Chapter
3). For & = constant 4 may be canceled from Egs. (6-1.1).

6-2 Stress Components in Terms of Airy Stress Function F = F(r, 6)

To derive stress components in terms of the Airy stress function F, where F
is considered to be a function of polar coordinates (r, ), we may transform
Egs. (5-4.3) (for constant thickness and in the absence of body forces) to polar
coordinates as follows. By Fig. (6-1.1), we obtain the following relations between
(x,y) and (r, 0):

P =x +)/2
x =rcos, y=rsinf (6-2.1)
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Consider first the transformation of 6,. By Eq. (5-4.9), we note that we require
& F /3 in terms of (r, 6). By the chain rule of partial differentiation and Eq. (6-2.1),
we have
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Now, noting that as § — 0, g, — 0,, cos — 1, sinf — 0, we obtain
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Also, noting that as ¢ — n/2, 6, > 7y, cos — 0, sin — 1, we find
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In a similar manner, we may evaluate 8 F/dx dy. Then, noting that as
6 — 0,7, — 1,9, we find
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Accordingly, the stress components are given in terms of the Airy stress function
F(r, 0) by the relations
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More generally, the preceding transformations may be carried out with respect to
orthogonal curvilinear coordinates (Section 1-22). For variable thickness & = A(r, ),
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we replace o,, 64, 7,9 in Eq. (6-2.2) by ho,, hoy, ht,y {see Egs. (6-1.1)]. Also, for
certain cases, body forces may be introduced simply (see Section 6-6).

6-3 Strain—Displacement Relations in Polar Coordinates

Consider a point P in a medium that undergoes a deformation (Fig. 6-3.1). Under the
deformation, the point P moves to P*. With respect to rectangular Cartesian
coordinates (x, y), the displacement components of point P are (1, v); with respect
to polar coordinates, the displacement components are (U, V). Accordingly, by Fig.
6-3.1,

u=UcosO — Vsinf

) (6-3.1)
v=Usinf + Vcosf

Substitution of Eqgs. (6-3.1) into Eq. (2-15.14) yields ¢,, ¢, y,, in terms of U, ¥, and
f. For example, consider ¢,. By Eqgs. (2-15.14) and the chain rule for partial

differentiation, we obtain
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Figure 6-3.1
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where, by Egs. (6-3.1) and (6-2.1),
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Accordingly, by Egs. (6-3.2) and (6-3.3), we obtain
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Noting that ¢, — ¢,, sinf — 0, and cosf — 1 as  — 0, we obtain

au

€ = &lgo = o

Analogously, ¢, — ¢, sinf — 1, and cos! — 0 as § — n/2. Hence,

1oV U

€g = €x|6~>n/2 = ;@ -

Finally, in a similar manner, we may express y,, as a function of U, ¥/, and 0, and
noting that y,, — 7,y as 6 — 0, we obtain

oy ¥ 1aU

Yrg = nyl()—)O = o r ; 90

Accordingly, the strain components ¢,, €y, ¥,y With respect to polar coordinates (r, 0)
are
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where U = U(r, 0), V = V(r, 0) are the radial and tangential displacement compo-
nents (Fig. 6-3.1).

Alternatively, Eq. (6-3.4) may be derived by the method of Section 2-6 in Chapter
2 (see also Appendix 2B).

Problem. Derive the last of Egs. (6-3.4).

With the understanding that (i, v) denote radial and tangential components of
displacement relative to (», ) coordinates, we may write

du u lov

“Su 9Ty v
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The strain—compatibility relations in polar coordinates may be obtained either by
elimination of (u,v) from Egs. (6-3.5) or by transformation of Egs. (5-3.1) in
Chapter 5 into polar coordinates. Thus, for plane deformations we obtain the
compatibility relation

d 3’)),,0 ) 36() 86, 326,. _
or <r 0 ") o a0 (636

For the special case of rotationally symmetric problems where all quantities are
functions of radial coordinate » only, by Egs. (6-3.5), we obtain the compatibility
relations

€ = E(Vﬁ())

no=r5:()

(6-3.7)

Problem Set 6-3

1. Consider two orthogonal line elements, ds, and ds,, one radial and one tangential in a
plane R (Fig. P6-3.1). Consider the following separate deformations: (a) all points in the
body (region) undergo a radial displacement; U = U,(r, 8), V = ¥V, =0, where (U, V)
denote radial and tangential components of displacement; (b) all points undergo a
displacement such that U = U, =0, V = V,(r, 0). Derive expressions for the strain
components ¢,, ¢, ¥,y corresponding to the deformations (a) and (b). Superimpose the
results of deformations (a) and (b) to arrive at Eqgs. (6-3.4).

2. The line 7 is tangent to the centerline of a circular arc ring 4B at point P (see Fig. P6-3.2).
When the ring is loaded, point P undergoes radial and tangential displacement components
(w, u). Derive an expression for tan (¢* — ¢), the tangent of the angle through which line ¢
rotates. Linearize this formula for small rotations, that is, for tan(¢* — ¢) =~ ¢* — ¢.
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Figure P6-3.1

Figure P6-3.2

Recall that tan(¢* — ¢) = (tan ¢* — tan ¢)/(1 +- tan p* tan ¢p). Note that u = u(0),
w = w(B). Express the results in terms of a, w, u and derivatives of w and u.

6-4 Stress—Strain—Temperature Relations

Equations (5-2.12) and (5-2.13) in Chapter 5 remain valid for any orthogonal plane
coordinates, except that the derivatives 9/dx, d/dy must be transformed appropri-
ately. Accordingly, relative to polar coordinates (», /), we have the stress—strain
relations

6, = Ae + 2Ge,
Oy = /16 -+ ZGE()
T = G’Vr() (6—41)
ou u 1ov
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where (u, v) are displacement components relative to polar coordinates (r, 6); see
Fig. 6-3.1 (where U, V are used).

Accordingly, for plane strain we have the stress—strain—temperature relations
[Egs. (5-3.8)]

E
6, = m[(l — Ve, + veg — (1 + v)AT]
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and for the compatibility relations in terms of stress components [Eq. (5-3.9)]
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where (B,, By) denote body forces relative to (r, #) coordinates, T denotes tempera-
ture, and k is the coefficient of linear thermal expansion. For plane stress, we have
the stress—strain—temperature relations [Eq. (5-3.10)]
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and the compatibility relations [Eq. (5-3.11)]

3B, 1 19B,
Vi(o, +ap) + EVV,T)+ (1 + W)= +-B, +-—2) =0 (6-4.5)
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Problem Set 6-4

1. (a) For the case of plane stress relative to the (x, y) plane, write the integral ¥ of the strain
energy density U in terms of rectangular Cartesian coordinates (x,y). Neglect
temperature effects.

(b) Express the integral V in terms of polar coordinates (r, 0).

(c¢) Derive expressions for the stress components relative to polar coordinates (Section 4-3
in Chapter 4).

2. A circular ring, with rectangular cross section, has a unit thickness perpendicular to its
plane. Its inner boundary (» = a) is fixed. Its outer boundary (» = b) is subjected to a
uniform shearing stress S directed in the counterclockwise sense. (a) In terms of polar
coordinates (r, 0), with origin at the center of the ring, and polar coordinate stress
components, write the integral ¥ for the strain energy density U of the ring (plane
stress case).

It may be shown that the stress solution for this problem is given by g, = o, =0,
T, = SP? /r*. (b) Evaluate the integral ¥ of the strain energy density U. (c) By equating V/
to the work done during loading (the shear stress at r = b is increased from zero to §),
compute the rotation of the ring at » = b.

3. In Problem 2, determine the tangential (6) displacement v as a function of r, where v = 0 at
r=ga,and 7,y =S atr = b.

4. In Problem 2, assume g, = gy = u = 0, where u is the radial displacement. Show that
T =SH*/r. (Assume v =0 at r =g and 1, =S at r = b.)

6-5 Compatibility Equation for Plane Elasticity in Terms of Polar
Coordinates

Expressing the second derivative of F with respect to x in terms of polar coordinates
and adding it to the second derivative of F' with respect to y derived in Section 6-2,
we obtain

¥F ®¥F &@F 10F 1&F

O'X+O-y=W+ P 2 +;Er—+ﬁ£i (6-5.1)
Also, by Eqgs. (6-2.2) we note that
PF 19F 1 &F
6, + 0y =— (6-5.2)

ey

Accordingly, by Egs. (6-5.1), (6-5.2), and (5-7.1), we obtain the compatibility
relation (for constant body forces, or body forces derivable from a potential function)
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in terms of polar coordinates (r, 9):

# 19 132)(32F 19F 132F)
= =0 (6-5.3)
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Accordingly, in polar coordinates [see Sectin 1-22 and Eq. (1-22.13) in Chapter 1]

# 18 1 &

“wtrnt A (6-5.4)
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A solution of the compatibility equation V>V?F =0 in polar coordinates was
derived by J. H. Michell (1899) for a certain class of plane problems. A modified
form of the solution given by Michell' is

F = Aglogr + Byr? + Cor* logr + Dyr*0 + A0
A
+71r95in9+ (B, + Ar~' + Bjrlogr)cosf
C
—Tlr(?cos()—i— Dy + Cir~! 4+ Dirlogr)siné

o0
+ S (4,7 + B, 4+ A" + Bor ") cos nb

n=2

o0
+ Y (C " + D" 4+ Cor™" + Dl ™) sinnd (6-5.5)

n=2

Problem Set 6-5
1. Consider a ring loaded as shown in Fig. P6-5.1. Show that the function

C
¢ = (Ar2+Br4+ﬁ+D)cc)529+Fr2+H10gr

satisfies V2V?¢ = 0. Determine the constants 4, B, C,D,F, H to satisfy the stress
boundary conditions. Hence, derive formulas for g,, 64, 7,4.

2. Derive the equation of compatibility for plane problems in polar coordinates in terms of the
strain components [see Eq. (6-3.6)].

! The term Dyr26 was not given by Michell. Also, Michell included the terms r cos 8, r sin §, which are not
included here. However, these terms yield zero stress components. See S. P. Timoshenko and J. N.
Goodier, Theory of Elasticity, 3rd ed. (New York: McGraw-Hill Book Company, 1970), Chapter 4. See
also A. Timpe, Z. Math. Phys. 52: 348 (1905) and Math. Z., 17; 189 (1923).
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P = P, sin®

Figure P6-5.1

3. The stress function F = (E§/4n)r log rsin 6 has been proposed as a possible solution for

a circular ring with a radial slit (Fig. P6-5.3), where § is the radial displacement at the slit.

(a) Write down a complete set of boundary conditions in terms of stress components and
displacement components.

(b) Outline a procedure to determine a stress function that satisfies all boundary
conditions.

. For a problem of plane stress,

FEu = (1 —v)(logr)cost — 2 cosf + 268sinf
Ev=(1~-v)(1 —logr)sinf + 20 cos 0

where (1, v) are displacement components in polar coordinates (7, 6), E is the modulus of

elasticity, and v is Poisson’s ratio. There is no body force.

(a) Is this a possible displacement vector if the origin is included in the body? Explain.

(b) Is this a possible displacement vector for a closed ring with center at the origin?
Explain.

(¢) Does the corresponding Airy stress function satisfy the compatibility condition
V2V2F = 07 Explain.

(d) Show that for this problem the stress components ¢, and ¢, are equal.
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Figure P6-5.3

5. In addition to the terms given in Eq. (6-5.5) (obtained by the method of separation of
variables), the terms

F, = 4077 logr, F, = Bflogr
F3 =C0Orcosflogr, F, = Dfrsinflogr

are also solutions to the biharmonic equation of plane elasticity, in the absence of body
forces and thermal effects. Discuss the application of these terms to regions R, R,, R;,
with polar coordinate systems shown in Fig. P6-5.5.

6-6 Axially Symmetric Problems

For axially symmetric problems, ' = F(r). Then the equilibrium equations [see Egs.
(6-1.1)] reduce to (for & = constant)

d
0r+1(0,—09)+R=0, 0=0 (6-6.1)
dr r

Accordingly, for axially symmetric problems of equilibrium the tangential body

force O is zero, and the two stress components (g,, o) and the radial body force R

are functions of » only. Furthermore, the shearing stress 1, [see Egs. (6-2.2)] is zero.
The compatibility relation simplifies to

d> 1d\(d*’F 1dF
Il | il adiy I -6.
(a’r2 + rdr) (dr2 + r dr) (6-6.2)
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Equation (6-4.2) may be written in the form

1d dlld dF
ar {d_[_d_(d_)]} =0 (6-6.3)

In this latter form, the Airy stress function /' may be determined by direct
integration. Accordingly, for problems of axial symmetry, integration of Eq.
(6-6.3) yields the Airy stress function in the form

F =Alogr+ B logr+Cr* +D (6-6.4)

where A4, B, and C are arbitrary constants of integration, which are determined by
boundary conditions. The constant D does not enter into the formulas for the stress
components, as they depend on derivatives of F. Thus, by Egs. (6-2.2) and Eq.
(6-6.4), we obtain

1dF 4
o =L A B4 2l0gr) +2C
rdr r? (6-6.5)
&F A '

Gy -—ﬁ+B(3+2logr)+2C

:m

For a doubly connected region bounded by contours L, and L, and with the origin of
coordinates (r, §) inside the inner contour (Fig. 6-6.1), the requirement that the
displacement be single valued dictates that B = 0 (See Example 6-6.2; see also
remarks at the end of Section 5-4 in Chapter 5.)

Figure 6-6.1
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Inclusion of Body Forces. A direct and elementary treatment of the most
generally rotationally symmetric plane state of stress for linear isotropic elastic
materials under arbitrary body forces has been given by Stern (1965). The main
results follow.

For the most general rotationally symmetric plane problem, relative to polar
coordinates (7, 0) we assume that the stress components are independent of 6. Thus,
Egs. (6-1.1), with /2 = constant, yield

do, 0,—0y

d—+—r“+R=0
»
(6-6.6)
fd‘[_r{)_}_ﬂ_}_@:()
dr r

Recallying Eq. (5-3.12) and expressing V2 and 3/dx, 8/dy in terms of (r, ), in the
absence of temperature effects, we obtain for the equation of compatibility

d? 1d dR R
ﬁ(o’, + 0'0) +;E;(O'r + 0'9) = —K2 (;“f’ 7) (6-67)

where for plane strain K, = 1/(1 — v) and for plane stress K, = 1 + v. For purposes
of integration, it is convenient to rewrite Egs. (6-6.6) and (6-6.7) in the forms

ld , . 1
r_zg;(r g, —;(Ur+0'9)—R (6—68)
1d
;55(#1,9) =-0 (6-6.9)
1d d
;E{F[E(O}‘FU())‘FKZ}Q]} =0 (6"610)

where by the assumption of independency of 8, R and ® must be independent of 6.
Integration of Eq. (6-6.10) yields

o,+0y=Alogr+ B —K,H(r) (6-6.11)

where A and B are constants to be defined by the boundary conditions, and

HE) = J R(D) dé (6-6.12)

"o
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where 7, is some fixed (arbitrary) value of r. Hence, by Egs. (6-6.8) and (6-6.11), we

find, after integration, that

Rlog() — 1]+ g - %H(r) + %I(r)

FNIIN

C
g, :7‘_2+

where C is a constant of integration and

r

1) =7 ereac

Yo
By Egs. (6-6.11) and (6-6.13), we obtain

2-K
5—21()

C 4 B K,
gy = —ﬁ+z[2log(r)+ 1]+5—7H(r) +
Finally, integration of Eq. (6-6.9) yields
D
T9 = r_z =J (r )
where D is a constant and

10 =5 eewa

(6-6.13)

(6-6.14)

(6-6.15)

(6-6.16)

(6-6.17)

The displacement components are obtained by integrating the strain—displace-
ment relations. However, the displacement need not be rotationally symmetric. Let u
and v denote the radial and transverse components of displacement. Then the strain—
displacement relations in conjunction with Hooke’s law give for plane stress [see Eq.

(5-3.10) with kT = 0]

du 1 v
6r:5=Ear_an

u lov 1 v
“= W ET T E”

10u 8(0)22(1+v)

=Tt e\ E

(6-6.18)

(6-6.19)

(6-6.20)
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With the aid of Eqs. (6-6.13) and (6-6.15) and integration by parts, Eq. (6-6.18)
yields

1+vC 1- 3—
u(r, 0) = — ;v7+ 2EvArlogr— 4EvAr
1oV 1=y (H(r) - I(")]+ £(0)
2E 7T g MRV

where f(0) is an undetermined function of § only. Putting this result in Eq. (6-6.20)
and noting Eq. (6-6.16), we can write

1+vD 1

4
46

Y60 - I +

WO =-—Fp7""%

+rg(0)

where g(0) is another undetermined function and

Gm=fw®&

]

As a consequence of Eq. (6-6.19), however, we conclude that

df dg A
lt -0 g _42
d02+f , - F
so that finally we find
I+vC 1—v 3—v
u(r,0) = — z 7+ 2E Arlogr — A5 Ar
e LY ) - 109+ Mcos + N sin®
3F ¥ °F rlH(r r)l + M cos sin
14+vD 4 1
o, ) = —— 2 4 2 2T G = J()] ~ M sin0 + N cos 6 + Lr
E r E E

where the constants M and N represents the Cartesian components of a rigid-body
translation and L is a rigid-body rotation angle.

In certain cases, restrictions may be imposed on the constants. For example, we
should note that if the origin is contained in the body, then the constants 4, C, and D
must necessarily vanish. The constant 4 must also vanish whenever the origin can be
encircled by a contour entirely in the body, even though the origin itself is not; this
guarantees single-valued displacements. Finally, if any portion of the body extends
indefinitely, the constant 4 must vanish for stresses to remain bounded.

The accelerating disk affords a rather simple application of the preceding results.
Consider a circular disk of radius b clamped to a rotating shaft on a concentric
circular portion of the disk of radius a,0 <a < b. We suppose that at some
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particular instant the shaft is rotating with angular velocity w and angular accelera-
tion o. In a quasi-static analysis the problem may be rephrased as a circular ring
clamped along the inner boundary » = a and free of traction on the outer boundary
r = b, and further subjected to the body-force densities

R = pro?, O = —pra

where p is the mass density of the disk, assumed uniform throughout. Integrating
from the inner boundary (r, = a), we obtain

H(r) = %pwz(r2 - a’)
2

10) =55 04— o)

G() = — 3 pat® ~ )

Because the ring is complete, 4 = 0. Furthermore, on the outer boundary
0, = 1,9 = 0. Hence,

C B po* , 2 2
T3 g B+ + (1 =va]=0
D  px 4 4
g Tap® —a)=0

Atr=a,u=v=0,sothat M =N =0 and

1+vC l—vaB_

E o E 2 =0
I+vD
_ ol =
7 a+a 0
Thus, we find
1 (1 + v)pw?
g~ T
2 8 K
c- a- v)pw2a2K
8
D=-P2p— ot
4
L:—(1+V)pa(b4—a4)

4Eq?
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where

B+ + (1 —v)a?
(1 +v)b?* +(1 —v)a?

K= —d%

Then the stresses are given by

o, 3
p? a’ a* 2 2

o0 :—8—{[1 +r—2:|vK— [1 —;Eil[(l +3v)r — (1 —v)a —I(]]

T = _Zl.q%(b4 - r4)

while the displacement components are simply

= Pw2(1 — Vz)r[l _a_j:l[K _ (r2 . aZ)]
s

_ i) T az] B,

AT R | e

Example 6-6.1. Let A = B =0 in Eq. (6-6.5). Then Eq. (6-6.5) yields

o, =0y=2C (2)

Equation (a) represents the case of constant stress throughout the plane [see Fig.
E6-6.1].

Example 6-6.2. Let B = 0 in Egs. (6-6.5). Then

A 4
O'r:—2+2C, 0'0:——2+2C (b)
r ¥

Equation (b) may be used to represent the stress in a thick-walled cylinder with inner
radius a and outer radius b and with internal pressure p; and external pressure p,
(Fig. E6-6.2.1.) Then the boundary conditions are

= —py for r z b ©)
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TR
RERE

Figure E6-6.1

Substitution of Egs. (c) into Egs. (b) yields

4= a2b2(170 - p:)

b — g2
2 pp? d
2C zpl pO
P — g2
L
b

Figure E6-6.2.1
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To investigate the variation of (a,, 6,) through the wall of the cylinder, consider the
case p; = p, po = 0. Then Egs. (b) and (d) yield

a*b*p N a’p
r— (bz — a2)r2 b2 — g2

(©)
a’b’p a’p

(b? — ah)r? TR 2

Og =

The change of (g,, o) with radial distance r is pictured in Fig. E6-6.2.2.

Example 6-6.3. Plane Strain Axisymmetrical Deformation of a Circular Cylin-
der. A thick-wall cylindrical pressure vessel with circular cross section undergoes
linearly elastic deformation when subjected to a uniform external pressure acting on
its outer lateral surface r = b. Its inner lateral surface at radius r = a is constrained
by a rigid cylindrical core so that its radial displacement # = 0 at = a (similar to
Fig. P6-6.2, with u = 0). We wish to determine the stress components (g, 64, 6.),
where (r, 6) are polar coordinates in the cross section and z is the coordinate along
the axis of the cylinder. The origin of coordinates (r, 0, z) is located at the center
(r = 0) of one of its end cross sections (where z = 0). We assume that the cylinder is
free to expand laterally except at » = a but is constrained axially so that a condition
of plane strain relative to the (r, 0) plane exists.

Because the cylinder is loaded axisymmetrically, the theory of Section 6-6
applies. Thus, the stress components are independent of 6, and the tangential
displacement component v (Fig. 6-1.1) is zero. Also, 7,4 = 0 by Egs. (6-6.2) and
(6-6.4).

Figure E6-6.2.2
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In the absence of body forces and temperature field, Eqs. (6-6.13) and (6-6.14)
yield

C 4 B
a,:r—2+z[210g(r)— 1]+5

(@
C 4 B
Oy = —r—2+z[210g(r)+ 1]+E

Because the (r, ) origin can be encircled by a contour entirely in the body even
though the origin itself is not in the body (that is, it is located at » = 0), the constant
A = 0. [See the discussion following Eq. (6-6.20).]

The strain—displacement relations for a linearly elastic isotropic medium for plane
strain are {Eqs. (6-4.2) with kT = 0]

d 2
= Y e e -]
dr E (b)
el (1 =)
Eg—r— 7 o0 va,/ v
The second of Egs. (b) yields, with Eqs. (a) and 4 = 0,
A+vww] C B(1-2)
i ©
The boundary condition u = 0 for r = a yields with Eq. (c)
_ 2
C— B(1 — 2v)a )
2
The boundary condition ¢, = —p for » = b yields with Egs. (a) and (d)
_ 2pb? _ p(l = 2v)a*p? ©
Ta¥(1 = 2v) + b2’ T2 -2v)+ 2
Equations (a) and (e) yield
pb? a?
=14+ -2v)—=
or a(1 —2v)+b2[ +( v)rz}
ik L= -2 v
% —‘az(l__zm[ - ”’?z‘]
Therefore, because for plane strain o, = v(s, + g,), we obtain by Eq. (f)
2vpb?
P = constant (2

9z = T a2(1 = 2v) + 2
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Equations (c) and (e) yield

(h)

_ (d+wd- 2v)pb2r[ B az]

E[a*(1 — 2v) + b7] =

Problem Set 6-6

1. Derive expressions for the radial and tangential components of displacement for the
problem of Example 6-6.2.

2. A thin circular disk is given, which has outer radius » and inner radius ¢. The hole is
expanded and a smooth, rigid plug of radius a + ¢ is inserted. Determine the stresses in
the disk for this problem of generalized plane stress (Fig. P6-6.2).

3. A cylinder is cast of thermoplastic material in a steel mold (Fig. P6-6.3). The material
solidifies at 210°F. It is then cooled to room temperature, during which process the
material “shrinks” (by thermal contraction) around the steel core. Estimate the maximum
normal stress in the cylinder. The steel core has a 2-in. radius, and the plastic cylinder an
original radius of 4in. The coefficient of linear expansion is k = 0.0002 in./in./°F.
E =10° psi, v=0.5.

4. Noting that the radial body force for a solid constant-thickness (thin) rotating disk is
R = pw?r, where p is the mass density and w is the angular frequency, show that a
solution of the elasticity problem is given by ro, = F, 6y = (dF /dr) + pw?r?, where F
satisfies the equation

,d’F  dF

Fo—st+r

@ g 2.3
e 3+ Mpoir (@

Hence, show that the solution for F is

2.3
Feary BBt vpe’r

¥ 8 ®)

Derive expressions for the constants 4 and B for the solid disk (Fig. P6-6.4).

Figure P6-6.2
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I 4 in. l

Casting

\

Figure P6-6.3

5. A steel disk with a hole 2 in. in diameter is shrunk on a shaft 2.003 in. in diameter. The
disk has a constant thickness, and its outside diameter is 20 in. Assuming that the shaft is

rigid, calculate the angular velocity at which the disk will become loose on the shaft (see
Problem 4).

Figure P6-6.4
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10.

11.
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Consider the Airy stress function F = 4r* logr, where (r, §) are polar coordinates.

(a) Compute the associated stress components (o,, 0g, T,¢)-

(b) Is the above Airy stress function a possible solution to a boundary-value problem of a
complete ring (¢ < r < b, 0 < 0 < 27)? Explain.

(¢) Is the above Airy stress function a possible solution to a boundary-value problem of a
disk (0 <r < b,0 < 0 < 2n)? Explain.

(d) Ts the above Airy stress function a possible solution to a boundary-value problem of
an incomplete ring (a <r < b, 0 < 0 < 6, < 2n)? Explain.

. Plain strain axisymmetrical deformation of a circular cylinder: The cylinder has an inner

radius  and an outer radius b. The inside of the cylinder is restrained such that the radial
displacement is zero at » = a. The outside is subjected to a pressure p. Determine the
stress o,, 0y, and g, as functions of 7.

. A thin circular disk has outer radius b and inner radius a (similar to Fig. P6-6.2). The

radial displacement u at r = a is zero. The outer boundary (» = b) is subjected to pressure
p and is otherwise unconstrained. Determine the stress components (o,, ;) as functions
of polar coordinate r. Hint: See Eqs. (6-6.4) and (6-6.5), and note that the boundary
conditions must be satisfied. The problem is one of plane stress in the plane of the disk.

. A thin circular annulus (inner radius= a; outer radius = b) is subjected to a temperature

distribution T defined by the relation kT = 4(+> — a?), where k and A are known
constants. Derive expressions for the polar coordinate stress components (o,, 64, 7,9).
Hint: The compatibility equation for the axisymmetric plane stress problem is
d(reg)/dr = €,.

Let the disk of Problem 8 be subjected to pressure p at its inner surface (» = a), which is
now unconstrained. Let the outer radius be fixed so that the radial displacement u = 0.
Determine (g,, 6,) as functions of ».

In addition to the constraints and load of Problem 8, let the disk be subjected to the
temperature distribution T defined by kT = A(#* — a?), where k and 4 are known constants
(see Problem 9). Determine the polar stress components (o,, ,) as functions of r.

6-7 Plane-Elasticity Equations in Terms of Displacement Components

In

this section we develop the plane-stress equilibrium equations for an isotropic

homogeneous elastic material in the absence of temperature effects. In Section 6-9
we consider the plane stress problem of a variable-thickness disk of nonhomo-
geneous anisotropic material.

(r,

For plane stress, the stress—strain equilibrium equations in polar coordinates
#), in the absence of temperature effects, are [see Egs. (6-4.4)]

g, = _E—(Er + Vé())

1 —y2
E
gy = 1—'_7(69 + VE,) (6-71)
E
— G _——
Tr0 7o 2(1 ¥ V) Vo
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where (g,, 04, 7,4) and (¢,, €, ¥,9) denote polar coordinate components of stress and
strain, respectively, and where v denotes Poisson’s ratio, £ Young’s modulus, and G
the shear modulus. The strain-displacement relations in plane polar coordinates are
[Eg. 6-3.5)]

1

U
€ = U, €g=—+-1g
r r
) (6-7.2)

1
T = JUp T U =

where (v, v) denote (r, #) components of displacement, and where (7, 0) subscripts
on (u, v) denote differentiation relative to (r, 6). Substitution of Egs. (6-7.2) into Egs.
(6-7.1) yields

B
%:T§§G+%+WJ (6-7.3)

I E (u9+v g)
T2+ \r T

The equilibrium equations are, with A = constant {see Egs. (6-1.1)],

3 1o —
d,p 130, 2 674
rf O Tro
—— By =90
or + r 90 + + 5
Substitution of Egs. (6-7.3) into Egs. (6-7.4) yields
E u, u  (1+vug B —vvg (1 —vuy _
l—vz[u"+r_r2+ 2r 2#2 + 272 +5,=0
E (1 + V)”ro (3 - V)ug (1 - v)vrr
1 —2 [ 2r T + 2

(I—=vv, (1—-vv vy
+ 2r 22 + r?

]+%=0®J$

In Egs. (6-7.4) and (6-7.5) we have denoted body forces in the (r, 8) directions by
(B,, By), respectively. Equations (6-7.5) are the equilibrium equations for plane
stress problems in terms of displacement components (u,v) relative to polar
coordinates (r, 6). They form the basis for study of plane stress boundary-value
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problems in polar coordinates. For the classical axisymmetric problem, u = u(r),
v = 0. Then Egs. (6-7.5) reduce to the single equation

E I:dzu ldu u

[Rered Py

] +B,=0 (6-7.6)

For B, = 0, Eq. (6-7.6) may be written

d[1d
;EEW4=°

and direct integration yields the solution
C
u=Cr+-2 (6-7.7)
r

where the constants Cy, C, are determined by boundary conditions. For example, by
Eqs. (6-7.3) and (6-7.7), we obtain, because v = 0,

_EC EC, 1
rT _1 2
I—v +vr (6-7.8)
_EC, n EC, l
oo_l—v 1 +vr?

With the boundary conditions ¢, = —p, for r = b, 6, = —p, for r = a, we obtain
(see Example 6-6.2)

C = 1— vpia2 —p0b2

E b -a (6-7.9)
1+ va’b*(p, — p,)
G = E b2 — g2

Example 6-7.1. Stresses in a Rotating Disk Subjected to a Temperature
Gradient. A thin solid disk of radius a rotates about an axis through its center
r = 0 with a constant angular velocity . It is also subjected to a temperature field T
defined by the relation T = Tyr/a, where Ty is a constant. We wish to determine the
stresses in the disk and the increase of its diameter resulting from these effects.

The radial body force is R = prw?, and because w = constant (a = 0), the
tangential body force ® = 0 (see Section 6-6). Hence by Egs. (6-6.8) and (6-6.9),
we have

%% (r'o,) = ;(ﬂr +a4) — pro? (a)

1d
}33;(” T,0) =0 (b)
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By Eq. (6-4.5), for plane stress we have (with B, = R = prw’ and By = © = 0)

1d
rdr

[r[% (6, +0y+EKT)+ (1 + v)prwz] } =0 (c)

Solving Egs. (a) and (c) for (o,, 6y), with T = Tyr/a, we find by the procedure used
to obtain Eqgs. (6-6.13) and (6-6.15), because 4 = 0,

GEpty Ty 3Ty @
C B 1+3v , 2 r
Og —r2+5— 8 VZCL) —gEkTOZ (e)

D
T, = ) (f)

where D is a constant.
The boundary conditions at » = a are ¢, = 0 and t,, = 0. With these conditions,
Egs. (d) and (f) yield

C B 3+v Ek
——g—pazco2 4-?T0 (g)

227
D=0 (h)

At r =0, u = 0. Hence, we must obtain an expression for  in terms of (o,, g4) or
constants C and B.

For plane stress, the strain—displacement relations are by the first two of Eqgs.
(6-4.4)

du 1 .
&G=1= E(a’ —vog) + kT i)
1
€0=g=i(00—"0r)+kT 0)
Equation (j) yields
1
u= E[rag —vro, ]|+ kTr (k)

For r = 0, Egs. (d), (e), and (k) yield

uzozl[_g_vg] )
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Consequently, in order for u to be zero, C = 0. Hence Eq. (g) yields

34V oo 2EKT,

B = 4 pacw 3 (m)
and Egs. (d), (e), and (m) give
34y 5, EkT, ¥ :
G,—pr(a —7'2)+—3'*<1—E) (Il)
2 EKT, 2
05 =PG4 v)a? — (1 +30)2) + 20 (1 ——5) ()
8 3 a
By Egs. (k), (n), and (0), the general expression for u is
(1~ V)pw?r 5 5 kTgr r\  VvkTyr r
u =P34 v — (1 + vy HT(I +5) — (1 7) ()
Thus, for r = q,
1-v 2
u= -T—pa3w2 +§kT0a
and the increase in the diameter of the disk is
1— 4
Ad = 2u= (2—” pddw? + ZkToa @

6-8 Plane Theory of Thermoelasticity

The plane theory of thermoelasticity is based on assumptions equivalent to those of
plane-elasticity theory. Consequently, plane thermoelasticity consists of two cases:
plane strain and plane stress (or, more generally, “generalized plane stress™).

Plane Strain. We recall that a body is in a state of plane strain parallel to the (x, y)
plane if the z displacement component w is constant and if (u,v), the (x,y)
components of displacement, are functions of (x,y) only. Consequently, the
strain—displacement relations in (x, y) coordinates reduce to

. du v c —0
= — €, == — , =~ =
T’ Yy
) (6-8.1)
ou ov
yxy:_ a0’ yxz:))yz:()

dy Ox
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Substituting Eqgs. (6-8.1) into the equations of thermoelasticity (see Section 4-12
in Chapter 4), we obtain relations for the plane strain theory of thermoelasticity.

In cylindrical coordinates (r, 6, z) the plane strain condition is expressed by the
relations

u=u(r,0), v=uv(r, 0), w = const

Hence, the strain—displacement relations in cylindrical coordinates are [see Egs.
(2A-2.7) in Chapter 2 and (6-7.2)]

du u 1dv
6,25;, 60:;4‘;@, Cz:-O
(6-8.2)
lou o v

= —— _— -, = :0
7ro r86+8r v Pez Yeo:

The stress—strain—temperature relations in cylindrical coordinates are [see Egs.
(4-11.6) and (6-4.2)]
€, = E_l[o-r - V(GB + o'z)] + kT' Vo = G_ITrO
¢ =E"'log—v(o, + 0 )] + kT, 3, =75,=0 (6-8.3)
€, = E_l[az - V(O’r + 60)] + kT

For plane strain ¢, = 0; hence, the last of Egs. (6-8.3) yields
o, =0, + og) — EKT (6-8.4)

Substitution of Eq. (6-8.4) into Eq. (6-8.3) yields the stress—strain—temperature
relations for plane strain:

e, =E7[(1 - vz)(f, —v(1 +v)agl + (1 + VAT
€g = E7(1 —vag — v(1 +v)o, ]+ (1 + VAT (6-8.5)

1o =G'1g

For axisymmetric problems v = 0 and 3/96 = 0, and Eqs. (6-8.2) are modified
accordingly. Consequently, # and 7 are functions of r only.

For axially symmetric plane strain in the absence of body forces the equilibrium
equations reduce to the single equation [see Egs. (3A-2.7) and (2A-2.7) and let
3/00 = v = 0]

do, a,—o0y
—L 4t =0 6-8.6
dr + r ( )
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Substituting Eqgs. (6-8.2) into Eqs. (6-8.5), solving Egs. (6-8.5) for (o,, ggy), and
substituting the resulting equations into the equilibrium equation [Eq. (6-8.6)], we
obtain

d*u ldu u 1+vdKkT)
arr rdr P27 1l—v dr

Rewriting this equation, we obtain

d [1d(ru) 1+ vd(kT)
“1z = 6-8.7
dr [r dr :l 1—v dr ( )
Integration of Eq. (6-8.7) yields
1 1{ B
u= +V—J pkT dp + Ar +— (6-8.8)
1 —vr), ¥

Equations (6-8.7) to (6-8.8) and corresponding modifications of the equations of
Section 4-12 in Chapter 4 summarize the plane strain theory of thermoelasticity.

Plane Stress. A body is in a state of plane stress in the (x,y) plane if
6, = 7,, = T,, = 0. Substitution of these conditions into the general thermoelasticity
theory of Section 4-12 in Chapter 4 yields the corresponding equations of plane
stress thermoelasticity.

In cylindrical coordinates, the stress—strain—temperature relations for plane stress
are [see Egs. (6-8.3)]

¢ = E" (0, —voy) + kT

¢ =E 0y —vo,)+ kT (6-8.9)
Vv

- = kT

€; E(Gr + O-0) +

Inverting the first two of Eq. (6-8.9), we obtain

E EkT

0y = (e, + veg) — oL
1 -2 1—v
(6-8.10)

E + ) EkKT

0y = ———(¢y +ve,) — ——
[/ 1— Vz( 0 r 1—v

Substitution of Egs. (6-8.10) into the last of Egs. (6-8.9) yields

—V

1 —

€, =

i
(€ + ) + 2k (6-8.11)
v 1—v
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Equation (6-8.6) is the equilibrium condition for axially symmetric plane stress
thermoelasticity, as o, = 1,, = 145, = 0. Also, because v =3/30 =0 for axial

symmetry, the strain—displacement relations [Eqgs. (6-8.2)] reduce to

du

“= @ =y

| &

where u is the displacement in the r direction.
Substitution of Egs. (6-8.12) and (6-8.10) into Egs. (6-8.6) yields

d*u ldu u d(kT)
e

Integration of Eq. (6-8.13) yields

1({ B
u=(1+v);J kTpdp+Ar+;

(6-8.12)

(6-8.13)

(6-8.14)

Equations (6-8.9) to (6-8.14) and corresponding modifications of the equations of
Section 4-12 summarize the theory of plane stress thermoelasticity. Plane stress
thermoelasticity problems of radial heating of a thin circular disk and axial heating

of beams and strips are important in practice.

Problem Set 6-8

1. (a) Show that u= Y2, a,cosnf, v =73 oo, b,sinnf, where (u,v) denote polar
coordinates (r, §) components of displacement and the coefficients a,,b, are
functions of r only, is a possible solution of the plane stress equations of equilibrium

expressed in terms of displacement components (u, v).
(b) Derive the differential equations that define the coefficients a,,, b,,.

2. Assume that the Airy stress function F is of the form F = f(0), where f(6) is a function

of 0, the polar coordinate angle of polar coordinates (r, 6).

(a) Derive the explicit form for () for the case of the plane stress problem of a ring, in
the region @ < r < b, under uniform shearing stresses applied at the inner (» = a) and

outer (» = b) surfaces of the ring. Neglect body forces and inertia forces.

(b) Derive explicit expressions for displacement components (i, v) relative to polar
coordinates (r, 0), respectively, expressing the results in terms of the applied stresses

and the radii a and b.

3. A thin circular disk of radius a is subjected to a temperature distribution

renfi-)
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where T}, is a known constant. The compatibility equation for axisymmetrical polar
coordinate problems with thermal effects is

ld [ dF

where k is the coefficient of thermal expansion and C is an unknown constant of
integration (to be determined by boundary conditions). Determine the change in diameter
of the disk due to the applied temperature.

. Derive the compatibility equation given in Problem 3.

. A long mine tunnel of radius a is cut in deep rock. Before the tunnel is cut, the rock is
subjected to uniform pressure p. Considering the rock to be an infinite, homogeneous
elastic medium with elastic constants £ and v, determine the inward radial displacement at
the surface of the tunnel due to the excavation.

. A circular annular disk rotates with constant angular velocity @ about the axis O,
perpendicular to the plane of the disk (Fig. P6-8.6). The inner radius of the disk is located
at » = a, the outer radius at r = b.The inside radius is restrained to prevent radial
displacement. Assume that a state of plane stress relative to the plane of the disk exists.

(a) Derive the equations of motion of the disk in terms of displacement components
relative to polar coordinates (r, 8).

(b) Integrate the equations to determine the radial displacement u.
(¢) Determine the constants of integrations.

. Modify the equations of Section 4-12 in Chapter 4 for plane strain. Repeat for plane
stress.

. Let T =T(r,0) for a plane thermoelasticity problem in polar coordinates (r,8).
Determine an explicit expression for T(r, 8) for the steady-state case in absence of

\w

Figure P6-8.6
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heat source, expressing T'(r, 0) in the form T = T,(r) + T,(r, 0), where T,(r) is the part of
T(r, 0) dependent upon r alone. That is, show that

T)(r) = Ay + Bylogr
T(r, 0) = Y _[(4,7" + B,r")cosnd + (¢, + D,r ") sin nf)
1

n=

where 4,, B,,, C,, D, are constants.

9. In Problem 8 set all constants except B, and D, equal to zero. For the resulting
temperature field, determine the stress produced in a hollow circular cylinder defined
by cylindrical coordinates (r, 6, z), the z axis coinciding with the longitudinal axis of the
cyliner. Assume that axial displacement of the cylinder is prevented.

10. A nuclear fuel element in the form of a solid right-circular cylinder is free to expand
laterally but not axially. It is subjected to a radiation heat source in the form of the
Gaussian distribution

0= Ae™™"

where o? is a constant and r is the radial coordinate. Generally, o> « 1. Compute the
temperature distribution 7. What reasonable approximation may be used for 77?7
Determine the stress distribution in the cylinder. What practical restriction must be
imposed on A4?

11. A solid plane circular disk of radius a is subjected to the temperature distribution T given
by kT = A+ Brcosf + Crsinf, where 4,B,C are constants and (r,6) are polar
coordinates with origin at the center of the disk. The disk is not restrained at its boundary
r=a.

(a) Show that the solution of the plane stress problem of the disk is 6, = ¢y = 7,9 = 0.

(b) Derive explicit expressions for the radial and tangential displacement components
(u, v), respectively.

(c) Write the boundary conditions that determine the arbitrary constants of integration of
part (b).

6-9 Disk of Variable Thickness and Nonhomogeneous Anisotropic
Material

In this section we treat the variable-thickness elastic disk made of nonhomogeneous
anisotropic material relative to polar coordinates (r, §). We assume that the stress
components and body forces are functions of radial distance » from the center of the
disk.
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The equilibrium equations are [Egs. (6-1.1)]

d h

a(hﬂr) +- (0, - 0g) +hB, =0
, . (6-9.1)
a(h‘fro) T +hBy =0

where (o,, g, 7,4) denote stress components relative (r, 0) coordinates, & = h(r)
denotes the disk thickness, and (B,, B,) denote the body forces per unit volume in
the (r, #) directions, respectively.

For the material being considered, the stress—strain—temperature relations are

g, = C“Er + C12€() + C13V,0 - ClT
Oy = Clzer + C22£0 + CZ}VVO - CZT (6-92)
79 = Cp36, + Cp3€g + Ci37,9 — GT

where Cj; = C; = Cy(r) are elastic constants, C;= C(r) are thermoelastic
constants, T = T(r) denotes temperature, and (e,, €;, 7,9) are strain components.
Inverting Egs. (6-9.2), we obtain

€ = Sllor + SIZO-() + Sl3’cr0 + le
€9 = S120, + 809 + Sni37,9 + ko T (6-9.3)
Voo = S130, + 85300 + ST, + k3T

where (k;, k,, k) are linear thermal expansion coefficients related to C; and C;; by
the relations

Gy Gy Ci, Ci Ci, (i3
Cky =C, -G 3 )
o Gz Cy Gy Cy (3
Cp, Cy Cii Cis Cn Cp
Ck, = —C, A L BV D (6-9.4)
Cis Cy Cis Gy Cpp Cxn
Cp Gy Ch Cp Cy Cp
Chky = C, — L2 3 .
C3; Cn Ciz Oy C, Cp
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and

11C2 Cy3 11C2 Cis
Sn—E ’ 812:S21__E
Cy Cy Cyy Cy
S S 1[Ciz Cis 1{Cn Cis
13 =931 = & » 2=
¢ Cy Cy 9 Ciz Gy
S s 1€ Cis 11Cn Ci (6-9.5)
23 = P32 = T & ’ 33 = 5
¢ Cpp Gy ¢ Cp Cp
Ch Cp Cp
C=|C, Cp Cy
C3 Gy Cxy

For the type of problem considered here, u = u(r) and v = v(r). Then Eqs. (6-3.5)
reduce to

€ =u, € =—, Vg =V — = (6-9.6)

where primes denote derivatives with respect to r.
Equations (6-9.1), (6-9.2), and (6-9.6) yield
' u / [4
ag, = C”u + C12;+ C13<U — ;) - CIT
! u / v
09 = Coptd + Cp =+ Cs (u - ;) —GT (6-9.7)

, u v
Ty = Citt + O~ + C33<U/ —;) -GT

and

u/,+R]ul+R2u +R3U”+R4U/+RSU:R6 (698)
V' 4+ PV + Pyo+ Py + Py’ + Psu = Py '
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where
rRl = 1 +—L&;1
11
. C
1 Ch
g - Co
Ci
- C
rRy = =—Cly — =2
Cu Ciy
rR5 = —R4
| _, C
R6_—_—|:—B,+C1T/+<Ci+—-]——C2>T:|
r r
e (69.9)
rPl =] +_—C§3
33
er = _Pl
Cy3
20, + C .
py =2t s e
Cy3 &
C ro-,
PPy = =2 4+ —Chy
33 33
17 - 2C; + rC; -
P :_—[—B9+ <—i—u>T+C3T’]
C33 r
where

C; = hC;, C; = hC,, B, = hB,, By = hB, (6-9.10)
If the disk rotates with angular velocity w and angular acceleration o,
B, = pw?, By = —par (6-9.11)

where p denotes mass per unit volume.

Boundary Conditions. We consider two cases.
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Case 1.

Forr=a, g, = 0, T9 =1,
For r = b, g, = 0Oy, T, =Ty

where a,, 6, T, 7, are prescribed constants.
Case 2.

Forr = a, u=u,, v=1u,
Forr = b, o, = 0y, T = Tp

where o, 1, 4,, v, are presribed constants.

(6-9.12)

(6-9.13)

Substitution of Egs. (6-9.7) into Egs. (6-9.12) and (6-9.13) yields the boundary

conditions in terms of (u, v) in the form

Case 1. Forr =a,

u ; v
C“u/ +C12;+C13(U ""E) _ClTa =0,

/ u < AT _
Ciaul + Gy + G\ a> GT, =1,
where T, = T evaluated at r = a. For r = b,
/ u / v
Chu + Cuz“‘ CD(U *E) -G T, =0,
/ u ’ v
Cl3u +C23I_)+C33(U —Z) —C3Tb =Ty
where T, = T evaluated at r = b.

Case 2. Forr = a.

For r = b,

g—qn:%

U , 1)
C13u/+C23E+C33(U —5) - C3Tb =Ty

u
C”u/ + C]zZ'{‘ Cl3(l)/ bt

(6-9.14)

(6-9.15)

(6-9.16)

(6-9.17)

Equations (6-9.8) with appropriate boundary conditions [Eqgs. (6-9.14) and
(6-9.15) or Egs. (6-9.16) and (6-9.17)] define the described disk problem for plane
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stress with nonhomogeneous anisotropic material. If C; = Cy; = 0 and v = 0, the
above theory reduces to the axisymmetric plane stress problem of the orthotropic
disk. If C)3 = Cy; = 0 and v # 0, the above theory uncouples into two problems,
one that defines u and the other that defines v. The defining equations for the u
problem are the first of Eqs. (6-9.8) with R; = R, = R; = 0 and the boundary
conditions ¢, = o, forr = g, 0, = 0, forr = b [Case 1, Eq. (6-9.12)], or u = u, for
r = a, o, = ¢, for r = b [Case 2, Eq. (6-9.13)]. The defining equations for v are the
second of Egs. (6-9.8) with P; = P, = Ps = 0 and the boundary conditions 7,y = 1,
forr = a, 1,9y = 1), forr = b [Case 1, Eq. (6-9.12)], or v = v, for r = a, 7,y = t,, for
r = b [Case 2, Eq. (6-9.13)]. The finite difference method may be used to solve the
boundary-value problem described above.

Problem Set 6-9
1. An annular plane region R defined by a < r < b is subjected to uniform pressure p, at
r=a and p, at r =b. The stressstrain relations of the material relative to polar
coordinates (r, ¢) are
0, = Cne +Cagy
oy = Cia6, + Ciaéy
Trg = C}}"/'r()

where C; are constant elastic coefficients.

(a) Considering the physical nature of the problem, express the equilibrium equations in
terms of (i, v), the (r, ) displacement components.

(b) Show that the radial displacement component « is of the form
u=Ar"+ Br"

where n is an explicit function of the elastic constants C;; and (4, B) are constants.
(¢) Write the conditions that define the constants 4 and B.

6-10 Stress Concentration Problem of Circular Hole in Plate

The general solution for the Airy stress function [Eq. (6-5.5)] includes a number of
special cases of importance (Section 6-11). In this article we single out the
particularly important problem of a plane rectangular region with interior circular
hole and subjected to uniformly distributed edge stresses (Kirsch, 1898). As a
special case of this problem, we treat in detail the case of uniformly distributed
normal stress along two opposite edges (Fig. 6-10.1). More generally, normal stress
and shear stress may be distributed uniformly along all edges. We assume that the
hole is sufficiently small compared to typical overall dimensions of the region so that
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Figure 6-10.1

there exists regions far removed from the hole in which the stresses are essentially
unaffected by the hole. Hence, for a circle » = b scribed in the region (b 3> a), the
stress distribution is obtained by considering the equilibrium state of an element
(Fig. 6-10.2). Thus, we find

N =ocos?f = %(1 + cos 26)
. (6-10.1)
S = —cosinfcosf = —zsin26

/N

Figure 6-10.2
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For simplicity, we may consider the stress components [Eq. (6-10.1)} as the sum
of two stress states (Fig. 6-10.3)

N =N, + N.
1+ (6-10.2)
S = Sl +Sz
where
c
and
N, = %cos 20, S, = —g—sinZH (6-10.4)

The stress distribution for state 1 is described by the results of Example (6-6.2), with
p: =0, pp = —0/2, and a < b. The stress distribution of state 2 may be described
by the Airy stress function

F@r,0) = f(r)cos 20 (6-10.5)

Substitution of Egs. (6-10.5) into the compatibility equation V*V?F = 0 yields the
equation for f(r):

<d2 Ll d_4)(ﬁ+ldl_4l):o

dar?  rdr r2J)\dr? rdr

the solution of which is
f(r) =4 + Br* + Crl2 +D (6-10.6)
Hence,
F(r,0) = (Ar2 +Brt + Crl—2 + D) cos 20 (6-10.7)

Equation (6-10.7) corresponds to the term in the first summation of Eq. (6-5.5), with
n =2, where 4, B, C, D are constants to be determined by the boundary conditions
for state 2 (Fig. 6-10.3).

The stress components for state 2 are, by Eqs. (6-10.7) and (6-2.2),

6C 4D
g, = —(2A +7+r—2) cos 26

6C
oy = <2A + 12Br% + 7) cos 20 (6-10.8)

6C 2D
Ty = (2,4 + 6Br? — - r_2) sin 20



[ del§
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Accordingly, with Eqgs. (6-10.8) and the boundary conditions

6,=1,y)=0 for r=a
1 L (6-10.9)
6, = 500520, T, = —50sin26 for r=
the values of 4, B, C, D are
o a* a?
A=——, B=0, C=——o, D=— 6-10.10

Then superposition of Egs. (6-10.8) and Egs. (b) of Example 6-6.2 [with Egs. (d)
under the conditions that p;= 0, py = —(¢/2) and b > a] yields the stress state in
the plane region with small circular hole (Fig. 6-10.1):

o a2 g 3t 4d?
=—(1—-—= — — 20
o, 2( r2)+2(1+ 1 r2>cos

2 3a?
a(,:%(1+j—2> —%(1-{—%) cos 20 (6-10.11)
o 3a* 247 .
T, = —§<1 —7+r—2> sin 260

We note that as » — & (C>a), the stress state given by Eqs. (6-10.11) satisfies the
conditions for » = b [Egs. (6-10.1)]. Also for r = a,

0, =T, =0, gy = o(1 —2cos20)

For 0 = n/2, 3n/2, o, attains its maximum value of (gy),,, = 30. [In general,
(09)max = ko, where k is called the stress concentration factor.] For 8 =0, n, gy
attains a compressive value of —o. Thus, g attains a maximum tensile value of three
times the uniformly distributed stress o, at the hole » = q, for 6 = n/2, 3n/2 (Fig.
6-10.4).

Because for 0 = n1/2, 3n/2, 69 = (6/2)(2 + a*/r* + 3a*/r"), 65 — o rapidly as
7 increases. Hence, the effect of the hole is of local character, the hole producing a
stress concentration effect that increases the maximum stress several fold in the
vicinity of the hole over the nominal stress value a.

By superposition, we may also show (6y),,.« = 20 everywhere at the boundary of
the hole, when uniform tensile stress o is applied along all straight edges of the plate.
Furthermore, if a uniform compressive stress of magnitude ¢ is applied to two
opposite edges (say, the horizontal edges in Fig. 6-10.1) and a uniform tensile stress
g is applied simultaneously to the other edges (Fig. 6-10.1), at the hole, then

o) =40 for 0 =mn/2,3n/2

09 = —40 for 0=0,n
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|3o |

l | —— s
| -
D | —
0
|
| w
- 0 —d
o | 4
ot o
|
<l ' —
i
- L —

Figure 6-10.4

The large stress concentration effect that occurs at small holes in structural elements
is of considerable importance to the designer. Much effort is expended to determine
these effects and to design elements that minimize such effects (Savin, 1961).2

The displacement components in the region may be determined by the method
noted in Section 6-6, that is, by direct integration of the strain—displacement relations
[Egs. (6-3.5)].

Plane Strain under General Loading. More generally, the stress concentration
problem of a circular hole in a plate subject to boundary stresses a,, 0y, 7,, may be
solved by the method of superposition. For example, consider (x, y) axes with origin
at the center of the hole, with the x-axis in the horizontal direction and the y-axis in
the vertical direction (Figs. 6-10.1 and 6-10.4). On distant boundary planes
perpendicular to the x-axis, stresses o,, T,, act, and on distant boundary planes
perpendicular to the y-axis, stresses g, 7,, act. The stress components g,, 0y, T, are
assumed to act in the positive sense (see Fig. 3-2.2 in Chapter 3).

2 Savin’s book is devoted entirely to methods of calculating stress concentration factors.
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The stress components (g,, 0y, T,9) (see Fig. 6-1.1) at a point (7, 0), as in Fig.
6-10.4, are

o, +0, a® o, — 0, 3¢ a?
O',—( 3 )(l—r—2)+( 3 )(1+7‘—4r—2 cos 20

3¢ %\
+rxy<1 +%—4‘r’_2) sin 20

_ (o +a, a? o, —a, 3q*
O'(;—(T)(l+"3)—( 2 )(1'{"7)00529
4
- rw<l -|—3%) sin 26

6, —0 3a* 247\ . 3a*  24°
%:_( . y)(1——r‘}+riz)sm29+rxy(1—%+~f7)cos26

(6-10.12)
For plane strain, ¢, = 0. Hence,
o, =¥0, + dy) (6-10.13)
The first two of Egs. (6-10.12) and Eq. (6-10.13) yield
a? 4>
o, =v|o,+0,—2(o, —ay)r—ZCOSZH——rTrxysanO (6-10.14)
For r = a, Egs. (6-10.12) and (6-10.14) yield
g, = O, T,0 — 0
09 =0, + 0, —2(0, — 6,)c0s 20 — 41,, 5sin 20 (6-10.15)
g, = Vv0g

The maximum, minimum values of gy, hence ¢,, are given by the condition

T

tan2f = —— 2
o (Gx - O-y)/z

(6-10.16)

For example, for 1,, = 0, Eq. (6-10.16) yields tan 26 = 0, or § = 0 (or ), /2 (or
3n/2). Thus, by Eq. (6-10.15) we obtain

o9 = —0, + 30, for0=0,n; r=a (6-10.17)
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and

09 =30, — 0, for 0 =n/2,37/2; r=a (6-10.18)

For the cases (0, = 0, 0, = 0), (6, = 9, = 0] and (o, = —0, = o), Egs. (6-10.17)

and (6-10.18) yield the results obtained in the discussion following Egs. (6-10.12).
For 0, = 0, = 0, 0y = —41,,sin 260. Hence,
(00)max = 4Ty for@ =3n/4; r=a

(00)min = 47 for=n/4; r= (6-10.19)

Applications of Egs. (6-10.12) to rock-mechanics problems have been given by
Leeman and Hayes (1966) and to deep mine-shaft problems by Chan and Beus
(1985).

Large Holes. Equations (6-10.11) and (6-10.12) are applicable for the condition
a < b; that is, for small circular holes relative to the loaded regions (Fig. 6-10.1).
For a large hole (the radius of the hole being large compared to the smallest
dimension of the region, which is the lateral width w in Fig. 6-10.4), these equations
and the associated concentration factors are no longer valid. Chong and Pinter
(1984) employed finite elements to investigate the effect of the ratio a/w (hole
radius/width of strip) on the stress concentration factor & for the loading shown in
Fig. 6-10.4. They found that in the range of a/w from 0.3 to 0.9, k varies from 3.44
to 19.50, respectively. As the ratio a/w approaches 0.99, k increases to 163. For
small values of a/w (<0.1), k becomes essentially constant and equal to approxi-
mately 3. An extensive literature survey, including experimental results, is also
presented in the paper.

Problem Set 6-10

1. A very large plate has a small circular hole in it. At a long distance from the hole,
o, = 20 kip/in.?, o, =30 kip/in.%, T,, = 0. Calculate the maximum tensile stress in the
plate adjacent to the hole.

xy

2. Consider the Airy stress function F' = f(r) cos 26, where (r, 8) are polar coordinates and

f(7) is a function of r only.

(a) Derive the differential equation that defines f(r).

(b) Show that f(r) = C,”* + C,R* + C3(1/7*) + C, is the solution of the differential
equation of part (a).

(¢) Consider the polar coordinate region bounded by the 6 coordinate lines » = a, r = b,
a < b. Determine the equations that define C,, C,, C;, C4, supposing that 5, = 1,5 = 0
for r = a, and 0, = o cos 20, 1,y = —osin20 for r = b, where ¢ is a known constant.
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6-11 Examples

A large number of special cases of the general solution of Eq. (6-5.5) find important
practical applications in practice. Rather than discuss these cases in detail, we merely
note briefly some important specializations of Eqgs. (6-5.5) and the corresponding
applications.

Example 6-11.1. Pure Bending of Curved Bars. The Airy stress function [see Eq.
(6-6.4)]

F =dlogr+Brlogr+ Cr*+D (E6-11.1)

may be used to study the problem of pure bending of curved bars (Fig. E6-11.1). The
corresponding stress components are given by Eq. (6-6.5). The constants 4, B, and C
are determined from the boundary conditions (the beam has unit thickness)

o, =0, r=a,b

b b
J Ogdr =0, J ogr dr = =M (E6-11.2)

a

T, =0 on all boundaries

Figure E6-11.1
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Hence, the stress components are then defined by Egs. (6-6.5) with
— i}g a’b? logg
B=— %’\‘,1(1)2 - d)

A=

Y (E6-11.3)
C =0 ~a* +2( logh — o’ log a)]

b 2
N =@ —a - 4ab (log —)

a

The strain components may be obtained for either plane strain or plane stress
conditions. The displacement components may be obtained then by direct integration
of the strain—displacement relations [Egs. (6-3.5)].

Example 6-11.2. Circular Cantilever Beam. The Airy stress function
F(r,0) =f(r)sinf (E6-11.4)

may be used to study the problem of the circular cantilever beam subject to end shear
(Fig. E6-11.2). With the compatibility condition V2V?F = 0 and Eq. (E6-11.4), we
find

1) = 4P +5;+ Cr + Drlogr (E6-11.5)

Hence, by Eqgs. (6-2.2), (E6-11.4), and (E6-11.5), the stress components are
D
g, = (2Ar—-2§+—) sin
r r
D
oy = (6Ar + g + 7) sin (E6-11.6)
r

2B D
T,9 = —|24r — —+—] cosd
" B

With the boundary conditions
6, =7=0 at r=a,b

and the end shear condition

b
J TredY‘:P
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P

et a—

Nl

Figure E6-11.2

Egs. (E6-11.6) yield

P Pab? P
Ad=—. B=-27 D:-Nmﬂw%

2N (E6-11.7)

N=a*— b +(d +b2)log§

Again the strain components and the displacement components may be obtained by
the equations of Section 6-4, and by integration of the strain-displacement relations
[Egs. (6-3.5)].

It may also be shown that the Airy stress function

F=f(r)cosf (E6-11.8)

yields a solution to the circular cantilever beam subjected to end tension T and end
moment M (Fig. E6-11.3). Then, by appropriate superposition of the results obtained
with Egs. (E6-11.1),. (E6-11.4), and (E6-11.8), solutions of the problems illustrated
in Figs. E6-11.4 and E6-11.5 may be obtained.

Example 6-11.3. Normal Point Load on Edge of Half-Plane. The problem of the
point load P on the half-plane boundary (Fig. E6-11.6) may be analyzed by means of
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A\

Figure E6-11.3

AN\

Figure E6-11.4
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AN

Figure E6-11.5

the stress function (under the condition that stresses vanish as r — 00):
P .
F@r,0)=——rfsinf (E6-11.9)
T

The derivation of the stress components is left as an exercise. Note that the point
r = 0 is a singular point (yields an infinite stress). This result may be used to obtain
the stress distribution in the half-plane under the action of several point forces (see

Problem Set 6-11).
|

Figure E6-11.6
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Figure E6-11.7

Example 6-11.4. Plane Wedge Under Load at Tip. The wedge problem under
point load at the tip may be studied by the stress function (Fig. E6-11.7)

F = Ar0sin 0 (E6-11.10)

where A is a constant determined by the boundary condition of equilibrium for a tip
element. The stresses vanish as » — oo (compare Example 6-11.3). Certain
paradoxes of the wedge problem have been treated in the literature (Sternberg and
Koiter, 1958; Ting, 1984a, 1984b).

Problem Set 6-11

1.

Derive the strain components and the displacement components of Example 6-11.1.
Assume a state of plane stress in the (r, §) plane.

. Repeat Problem 1 for Example 6-11.2. Assume appropriate constraints at the wall

(support).

. Repeat Problem 1 for Example 6-11.3. Discuss the behavior at r = 0.

. Repeat Problem 1 for Example 6-11.4. Discuss the cases

a=mn/2, 2 <a<m

. A circular cantilever beam is loaded in pure bending (Fig. P6-11.5). Determine the

displacement of the end (point A). For r = (a + b)/2, 6 = 0, let the radial and tangential
displacement components vanish, ¥ = v = 0, and du/30 = 0.

. A thick rectangular plate is rolled into a cylindrical shape (Fig. P6-11.6). Residual stresses

resulting from the rolling process are removed by annealing. After annealing, the end
planes 1 and 2 are a small angle o apart. The end planes are then brought together by
applying a moment M to each plane, and the faces are welded together. Then uniform
internal pressure p; and external pressure p, are applied to the lateral surfaces of the
cylinder. Derive expressions for the radial and tangential stress components ¢, and oy.
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Figure P6-11.5

-

Figure P6-11.6
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7.

10.
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The stress function F = Arfsin 0 yields the solution to the problem of a semi-infinite
plate loaded by a concentrated force perpendicular to its straight-line boundary, where
0 <r,—n/2 <0 < n/2. Derive a formula for the maximum shearing stress at a point in
the plate some distance from the load. Derive an equation for curves along which the
maximum shearing stress is a constant, and trace several of these curves on a sketch of the
plate. Derive expressions for radial and tangential components of displacement.

. A semi-infinite plate is loaded normally to its free boundary by a concentrated force P

(Fig. P6-11.8). Assume that o4 = 7,5 = 0. Hence, show that ra, = f(6), where f(8) is a
function of 8 alone. Derive the formula for f(6). Hence, express o, as a known function of
r, 0, and the load P. Derive expressions for radial and tangential components of
displacement.

. The stress function for a single concentrated force P acting perpendicular to the straight

boundary of a semi-infinite plate is
P
F=——r0sinf
7r

By the method of superposition, derive expressions for the principal stresses and the
maximum shear at point 4 for the semi-infinite plate loaded as shown in Fig. P6-11.9, for
the cases @ = P and Q = 2P.

Two forces P are applied a distance 2b apart perpendicularly to the edge of a semi-infinite

plate (Fig. P6-11.10).

(a) Determine the principal stresses at a point D at a depth d below the surface in the line
of symmetry.

(b) The two forces P are replaced by a single force 2P applied in the line of symmetry.
Determine the depth ¢ below which the minimum principal stress at D is changed by
less than 4 percent.

Figure P6-11.8
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lQ

Figure P6-11.9

Figure P6-11.10
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Figure P6-11.11
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12.

13.
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Consider a plane disk subjected to diametrically directed forces P, as shown in Fig.

P6-11.11a. (See Appendix 6B for a more advanced discussion of this problem.)

(a) By considering the solution of the half-plane subjected to point load P acting normal
to the straight-line boundary, show by superposition of two appropriate half-plane
problems that we may obtain a solution to the disk problem for boundary stresses as
shown in Fig. P6-11.11b.

(b) Then, select a state of stress that when superposed upon that of Fig. P6-11.11b, is a
solution to the problem of Fig. P6-11.11a.

A tangential concentrated force P is applied to the upper half-plane (y > 0) at the origin
(Fig. P6-11.12). Formulate the problem in terms of the Airy function. Determine the
stress components. (Hint: See Problems 7 and 8.)

The semi-infinite plate is loaded uniformly along the straight-line boundary 6 = = (Fig.
P6-11.13). Show that the stress components may be derived from the stress function
F = Cr*(0 — sin § cos #). Evaluate the stress component for § = n/2; for § = 0. Discuss
any discrepancies in these components. Derive expressions for radial and tangential
components of displacement.

Ay

—_—p

Figure P6-11.12

RN .

Figure P6-11.13
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14.

15.

16.

PLANE ELASTICITY IN POLAR COORDINATES

Figure P6-11.14

For a state of plane stress expressed in polar coordinates, assume that all stress

components except ¢, are zero.

(a) In the absence of body forces and acceleration, show that ro, = f(8), where f(0) is an
arbitrary function of 0.

(b) Derive a general formula for £(6).

(¢) Apply the results of parts (a) and (b) to the problem of a cantilever wedge loaded in
its plane by a concentrated force P applied at its tip (Fig. P6-11.14); that is, express o,
as a completely determined function of » and 6. Discuss the boundary conditions at
the support.

A thin plate in the shape of a wedge is subjected to uniform pressure p acting along its
side § = —o and a uniform pressure g acting along its side # = « (0 < o < ©/2). Because
69 = —p, —q for 0 = —a, +a, 3F /8 must be independent of the radial coordinate r,
where (r, 8) denote polar coordinates and F is the Airy stress function. The tip of the
wedge is located at » = 8 = 0. Hence, the Airy stress function F may at most be
proportional to #2. Accordingly, by the general solution of V2V2F = 0 [see Eq. (6-5.5)],
we take

F = (4 4 B + Ccos 26 + Dsin 20)/*

(a) Derive the conditions that define the constants 4, B, C, D.

(b) For the case p = 0, « = /2, show that the solution yields the case of a semi-infinite
plate subjected to uniform pressure on one-half of its boundary.

(a) In the absence of body forces and temperature field, show that ¥ = Cr?(26 — sin 26),
C > 0 a constant, is an Airy stress function.
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18.

19.
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R

b
Figure P6-11.16

(b) For a plane wedge (Fig. P6-11.16), employ F of part (a) to determine possible
boundary conditions for the surfaces 0 = +a, where 2« is the wedge angle.

(¢) In terms of the constant C and polar coordinates (r, 6), determine the explicit
formulas for the stress components o, T, ON the vertical section ab.

A plane wedge (tapered beam with thickness of 1 unit) is loaded at its tip by a force P
(Fig. P6-11.17). In terms of polar coordinates (r,0) the stress components are
6, = —(kPcos0)/r, oy = 1,9 = 0, where k = 2/(20 — sin2¢) and « is the half-angle of
the wedge. In terms of &, P, x, y, derive expressions for the stress components g, 6, T,
relative to the rectangular Cartesian axes (x, y). Evaluate the maximum shearing stress at
the point x = 1, y = —1. (Hint: Consider the equilibrium of appropriate elements or parts
of the wedge.)

Determine the value of the constant C in the stress function
F = C[r*(a — 0) + #* sin 0 cos 0 — #? cos® tan o]

required to satisfy the conditions on the upper and lower edges of the triangular plate
shown in Fig. P6-11.18. Evaluate ¢, and t,, for a vertical section mn.

A stress function used in solving the problem of vertical loading of a straight boundary of
a semi-infinite plane region is F' = Ar*0. Consider a point P: (r, 0) (see Fig. P6-11.19).
Transform F into a function of the rectangular coordinates (x,y). Hence, derive
expressions for the stress components o,, g, 7,, that act at point P. Examine the
boundary conditions for 6 = +n/2.
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Figure P6-11.17
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Figure P6-11.18
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Boundary

0 4

X
Figure P6-11.19

APPENDIX 6A STRESS-COUPLE THEORY OF STRESS
CONCENTRATION RESULTING FROM CIRCULAR HOLE IN PLATE

The theory of plane elasticity with couple stresses is treated in Appendix 5A. In the
present appendix we give the solution to the plane-elasticity theory with couple
stresses for the circular hole in a plane region under uniform tension ¢ (Fig. 6-10.1).
The governing equations for the function / and ¥ are Egs. (5A-5.8) and (5A-5.10).
The solutions for H and ¢ in polar coordinates are (see Mindlin, 1963; Weitsman,
1965; Kaloni and Ariman, 1967, Chapter 5 References)

H :%rz(l —co0s20)+ Alogr + (rﬁ;—i— C) cos 20
D AN
W= |:r_2+EK2(i):| sin 20

where 4, B, C, D, E are constants and K,(r/l) is the modified Bessel function of
the second kind and second order. Equations (6A-1) may be shown to satisfy Egs.
(5A-5.8), (5A-5.9), and (5A-5.10).

In terms of polar coordinates (r, 6), the stress components and couples are a,, gy,
Trgs Tors My, My, (Fig. 6A-1). By equilibrium of triangular elements 1 and 2

(6A-1)
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m,,
Tor
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m,;
/ 2 = 42 2
r x* +
/ Tro y
/ “Tor mg, =
, or/// tan 0 = y/x
- Oy
—~ 18 x
Figure 6A-1

(Figs. 6A-1 and 6A-2), we obtain

6, =a,cos’ 0+ o, sin® 0 + (T4 + 1), sinf cos d
0y = o, sin” 0 + o, cos® § — (T + 7yx) sinf cos 6
1,9 = (6, — 0,)sinfcosf +7,, cos® 0 — Ty sin® 0 (6A-2)
Ty, = (0, — 0, )sinflcos b — 7, sin” 6 + Ty cos® §

m,, = m,, cos + m,, sin

mg, = —m,, sin 6 + m,, cos 6

Figure 6A-2
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Accordingly, by Egs. (5A-5.7) and (6A-2) and the relations

B 08_sin98
b}—cos or r 00
(6A-3)
. 6)8 cosf 9
P P
we find in terms of H and ¢
_ten 1 EH 1@ 10
ar_rar 2 o0° rordd 20
CPH LRy 1y
T0T 97 T e a0 o0
_\PH LoH 1wy 1%y
o = rorod 290 ror  r?ge? (6A-4)

1 #H  10H &y
T = — — ———— —_— —_—
or rord0 1230 o

oy
m,, =—-
or
_1¥
Moz = r 90

Substitution of Eqs. (6A-1) into Eq. (6A-4) yields, with the observation that

fa(7) =3k (7) + 1)

Ky(r/D) 1, qr ]
- 1k, (_) (6A-5)

B L) -l
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where K and K| are the modified Bessel functions of the second kind of orders zero
and one (Irving and Mullineaux, 1959),

o A 6B 4C 6D
6’25(1+CO520)+r—2_<r“+r2 r4)cos29
2E[31  r 62
+F [7K0<7) + (1 + )K (;)] cos 20

4 A 6B 6D
ogzz(l—cosZB)—ﬁ—i-(r4 rA)COSZH

ZIrE [311(0(1) + (1 + 612)1(1 (;)] cos 26

g 6B 2C 6D 0
w=—\gtE T )sin?

[+ () s

_ (7,68 ,2C 6D\
T 2TA TR T A

,Ez [(1 + 612)1(0(;) + (31 + E)Kl (1>] sin 20
e =~ Zsin20 -2 [ 2o () + (1425 )1, () | smas

my, = {2”13)+2E [KO(;) +¥K (1>]]cos20

The constants 4, B, C, D, E are determined by the boundary conditions

(6A-6)

o =m,, =0, r=a (6A-7)

and the condition

D = 8(1 —vPC



6A STRESS-COUPLE THEORY OF STRESS CONCENTRATION 491

where v is Poisson’s ratio, which is required for the satisfaction of Eq. (5A-5.9) in
polar coordinates. Thus, we find

Az_a_az’ B:_aa4(1—F)
2 41+ F)
c_ oa’ _ 41 =v)a*Po
20+ F) 1+F
_ palF (6A-8)
T+ PK (/D)
8(1 —v)
F= a>  2aKy(a/l)
271 K(a/])

The terms containing ¢ correspond to the stress distribution due to simple tension
(Section 6-10). The terms in » diminish as r increases. Hence, the stress state at
points far from the hole is due to simple tension o.

If the couple stresses are ignored, / = 0. Then noting that

Kyla/l)
o/l Ky(a/D) !

we see that the stress components of Eq. (6A-6) reduce to those of Eq. (6-10.11).
With [ # 0, the stress g, at the hole (r = a) for 0 = n/2, 37/2, is (Fig. 6-10.1)

3+F
Og—0 H——F (6A-9)
Accordingly, if stress couples are maintained in the theory, the stress concentration
factor depends both on Poisson’s ratio v and the ratio of the radius a of the hole and
the material constant / [Eq. (5A-4.6)]. If couple stresses are discarded, F = 0, and
the stress concentration factor is 3 [Eq. (6A-9)] as usual (Section 6-10). As a/l
decreases, so does the stress concentration factor. With a// = 3 and v = 0(0.5), the
stress concentration factor is 2.4(2.6).

Although the above theory implies that the ratio a// influences the stress
concentration factor, experiments indicate that in order to do so the material constant
/ must be of order of the grain size (Ellis and Smith, 1967).

Indeed, on the basis of these experiments, it may be concluded that the reduction
(from 3) in stress concentration factors that is experimentally observed for small-
radius notches and holes cannot be accounted for by the above simple couple-stress
theory. The requirement that / must be about the order of magnitude of the grain size
or smaller implies that theoretical foundations of the simple, isotropic, homogeneous
continuum must be extended to examine the problem in finer detail (Ellis and Smith,
1967).
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APPENDIX 6B STRESS DISTRIBUTION OF A DIAMETRICALLY
COMPRESSED PLANE DISK

An experimental test of a plane disk subjected to diametrically directed forces P
(Fig. P6-11.11a) is known as the split cylinder test (so called because the disk or
cylinder tends to split along the line of action of forces P) or the Brazilian test. The
split cylinder test is an extremely useful method for determining the tensile strengths
of brittle materials that have much higher compressive strengths than tensile
strengths (Chong, 1978). Typically, tensile failure will occur along the loaded
diameter, splitting the cylinder (or disk) into two halves (Chong et al., 1982).

The classical theory (Timoshenko and Goodier, 1970) assumes that the line load
is applied over an infinitesimally small width. If we assume a simple radial stress
distributions for each force P and superimpose boundary stresses (similar to Problem
6-11.11), we find that the horizontal tensile stress (Fig. 6B-1) along the diameter is
constant (Timoshenko and Goodier, 1970, and Problem 6-11.11) and equal to (for
unit thickness)

2P
g, = E (6B-1)
This stress distribution violates equilibrium (Fairhurst, 1964) because if half of the
disk (say, left of the loaded diameter) is taken as a free body, > F, # 0. To
overcome these difficulties, Hondros (1959) developed a modified theory assuming
negligible body forces and a finite width of loading applied radially. Numerical
results based on a series solution agree closely with his experimental results
monitored by strain gauges. Stresses along the loaded (vertical) diameter are
given by

6. = —_
* nab

_2p (1 — ¥2/R?)sin 2« it _1(1+r2/R2ta )
% = 7ab | (1 — 277 /R cos 20+ /R " 00 \T— 2Rz 207 (6B-3)

rxy=0

_ 2P [ (1 — r*/R?)sin 2a ) _1(1 + 2 /R?

(1 —2r2/R2cos2a + r*/RY) 1—_——"2—/ﬁtan “)] (6B-2)

where r = radial distance from the origin; R = radius of the disk; @ = width of the
applied load; and 2o = a/R. At any other point on the disk, the stresses are given in
a series form. For long cylinders (plane strain case) and thin disks (plane stress case),
the stress expressions given remain unchanged. However, the stress—strain relation-
ships are different.

The finite element method can be used to model the split cylinder test (Chong et
al,, 1982). As a result of symmetry, only one-quarter of the disk needs to be
considered. In the Chong et al. (1982) study, a total of 250 two-dimensional
elements with 146 nodes were used. Each node had two degrees of freedom. The
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nodal stresses were computed using consistent stress distributions. The load of P/2
was assumed to act at the apex node.

The stress distributions from the above theories, experiments, and the finite
element method along the vertical diameter (6., 6,) and the horizontal diameter
(04, 0,) are presented in Fig. 6B-1. These stresses have been normalized (divided) by
the quantity o, = P/(bd) for comparison with other references. Four different
methods are compared in the figure: (a) classical theory of Timoshenko and Goodier
(1970); (b) finite element analysis (Chong et al., 1982); (c) isodynes method
(Pindera et al., 1978); and (d) Hondros’ theory (1959) with bearing width a equal
to % of the disk radius. Methods (a) and (b) are plotted for all four curves. For
stmplicity, methods (c) and (d) are shown only if they deviate from the classical
theory.

It can be seen that the classical theory agrees well with all methods except for the
tensile stress across the loaded diameter a,. For ¢,, methods (b), (c), and (d) show
good agreement, indicating a very high compressive stress close to the load. This
represents the reversal of stresses necessary for equilibrium and balance of internal
horizontal forces. Both methods (b) and (d) indicate zero stress at 0.85 of the disk
radius measuring from the center, whereas method (c) measures zero stress at 0.90 of
the disk radius.

Physically, the region under the load experiences very high uniform compressive
pressures in 6, and o, [as indicated by Eqs. (6B-2) and (6B-3); this also can be seen
from the finite element analysis]. Apparently this region wedges its way into the
disk, causing an ultimate tensile failure in the brittle materials. This wedging action
can be seen in the displacement contours based on finite element analysis.
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