CHAPTER 7

PRISMATIC BAR SUBJECTED
TO END LOAD

In this chapter we consider the formulation of the classical problem of cylindrical
elastic bars subjected to forces acting on the end planes of the bar. After developing
the general theory, we examine bars of certain typical cross sections by elementary
means. First, we consider the classical problem of torsion of prismatic bars after
Saint-Venant. Next, we treat briefly the problem of bending of prismatic bars. The
latter theory is again attributed principally to Saint-Venant.

7-1 General Problem of Three-Dimensional Elastic Bars Subjected to
Transverse End Loads

Consider a cylindrical bar made of linearly elastic, homogeneous, isotropic material.
Let the bar occupy the region bounded by a cylindrical lateral surface S and by two
end planes distance L apart and perpendicular to the surface S (Fig. 7-1.1). The
lateral surface of the bar is free of external load. The end planes of the bar are
subjected to forces that satisfy equilibrium conditions of the bar as a whole. If the
body forces are zero, the following sets of equations apply:
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498 PRISMATIC BAR SUBJECTED TO END LOAD

(a) Equilibrium equations:

da, O, &

Py T = _

ax + ay + oz

ot ds, o

. AT e Cay 7-1.1
ax + ay + oz ( )
o, 9, do,

ox +—§+ oz =0

(b) Stress—strain relations:

o, = Ae+2Ge,, o, = Ae + 2Ge,, o, = Ae + 2Ge,

_ _ _ (7-1.2)
Ty = GYyys T, = GYyys 7,, = Gy,
or, alternatively,
1
€ = E [O-x - V(O'y + Jz)]
1
Ey = E[O-y - V(O'x + oz)]
1 (7-1.3)
€, = E[oz —v(o, +0))]
1 1 1
yxy = ETX)” Yz = arxz’ yyz = Eryz
(c) Boundary conditions:
On lateral surfaces (direction cosines /, m, n = [, m, 0):
Opy =lo, +mt,, =0
opy =ty +mo, =0 (7-1.4a)
op, =lt, +mt, =0
On ends (z = 0, z = L; direction cosines /, m,n =0, 0, F1):
Ty Tyz prescribed functions (7-1.4b)

such that
ZFxZPx’ ZFyZPy, ZMZZM

where P, P, denote (x,y) components of the resultant force and M denotes the
moment of the resultant couple. The problem of solving the equations formulated in
the above generality poses considerable mathematical difficulties, particularly if the
solution sought is to permit reasonably simple calculations. Fortunately, in a large
number of practical cases, it is unnecessary to consider the problem in such general
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terms. Even though in practice we rarely know the true distribution of forces that act
in the end planes of the bar, we often know a force system that is approximately
statically equivalent to the actual force system. Accordingly, if we are considering a
member with cross-sectional dimensions that are small compared to the length of the
member, it may be adequate merely to ensure that the solution yields resultant forces
and resultant moments that are approximately equal to actual values at the ends of
the bar. For example, by Saint-Venant’s principle, the stress distribution in regions
sufficiently far removed from the end planes will be little affected by different
distribution of forces over the end planes, provided the resultant force and moment
for all distributions considered are the same (Chapter 4, Section 4-15).

Finally, the stress component ¢; must satisfy the Beltrami-Mitchell compatibility
equations (in the absence of body forces and for uniform temperature distribution)

1 Pl
2 1 ..
- =0, ,j=1,2,3 7-1.5
Vot T Va a b (7-1.5)
where

fy =0, +0p+03=0,+0,+0, (7-1.6)
and

P N
V= (7-1.7)

—@_’—W_I——az_z

In the following discussion, we consider first the problem of twisting (torsion) of
the bar by couples whose planes lie in the end planes of the bar. Then we treat the
problem of bending of the bar by transverse end forces. The problems of bars
subjected to axial forces at the ends and to couples whose planes are perpendicular
to the end planes of the bar are left as exercises (see Review Problems R-1 and R-2 at
the end of this chapter, p. 571).

7-2 Torsion of Prismatic Bars. Saint-Venant’s Solution. Warping
Function

In Chapter 4, Section 4-19, we treated the problem of torsion of a bar with simply
connected circular cross section by the semi-inverse method. By taking displacement
components in the form

u=—pfyz, v = Pxz, w=20 (7-2.1)

where (x, y, z) denote rectangular Cartesian coordinates and f denotes the angle of
twist per unit length of the bar, we were able to satisfy the equations of elasticity
exactly, provided the end shears were applied in a particular manner (Section 4-19).
However, if we proceed to apply Egs. (7-2.1) to the torsion problem of a bar with
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simply connected noncircular cross section, we find that in general it is not possible
to satisfy the boundary conditions on the lateral surface [see Eqs. (7-14)]. Accord-
ingly, Egs. (7-2.1) do not represent the solution to the torsion problem of bars with
noncircular cross section. Hence, we are faced with the choice of either modifying
Egs. (6-2.1) or abandoning the semi-inverse method with regard to displacement
components. For example, one may attempt to add more generality to Egs. (7-2.1)
(after Saint-Venant) or one may attempt to reformulate the problem in terms of stress
components (after Prandtl). Initially, in this section, we modify Eqgs. (7-2.1). In
Section 7-3 we return to the formulation of the problem in terms of stress
components.

The concept of allowing a section distance z from the end z = 0 to rotate as a
rigid body about the axis of twist (the z axis, Fig. 7-2.1) is analytically attractive.
Accordingly, we retain the same form for (u, v) [see Eq. (7-2.1) and Section 4-19];
however, we relax the condition w = 0.

Because the end forces tend to twist the bar about the z axis, physically it seems
reasonable that extension of the bar along its axis is of secondary importance.
Hence, the dependency of w, the displacement component in the z direction, upon z
appears to be of secondary importance. Physically, the dependency of w upon
coordinates (x, y) is difficult to guess. Accordingly, we do not attempt to specify an
explicit relation between w and (x, y): rather, we arbitrarily take (after Saint-Venant)
w in the form w = By (x, ), where Y(x, y) is an arbitrary function of (x, y). Because
Y(x, y) is a measure of how much a point in the plane z = constant displaces in the z
direction, it is called the warping function. Thus, for the small-displacement torsion
problem of a bar with noncircular cross section, we take the displacement vector
(u, v, w) in the form

u=—Pzy,  v=PFzx,  w=pY(xy) (7-2.2)

We now proceed to determine whether the equations of elasticity may be satisfied by
this assumption. In other words, we seek to determine the function (x, y) such that
the equations of elasticity are satisfied.

For small-displacement theory, Egs. (2-15.14) and (7-2.2) yield

7-2.3
Yz = (aali_y>v Vyz:ﬂ(%_‘_x) ( )

7-2.4
rxzzGﬂ(f’f—y), ryzzGﬁ(%w) 724
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Now substitution of Egs. (7-2.4) into Egs. (7-1.1) yields for equilibrium

82!# Yoo
where now
, # &
Vi=saty

Accordingly, the assumption of displacement components in the form of Egs. (7-2.2)
yields the requirement that V> = 0, that is, that y be harmonic over the region R of
the cross section of the bar (Fig. 7-2.1). Because we have assumed displacement
components (u, v, w), compatibility conditions are automatically satisfied (Chapter
2, Section 2-16). Consequently, we have satisfied the equations of elasticity, provided
that we can find a harmonic function (warping function) i that by Egs. (7-2.4) yields
stress components that satisfy the boundary conditions [Egs. (7-14)].

Substituting Egs. (7-2.4) into the boundary conditions for the lateral surface, we
see that the first two of Eqs. (7-1.4a) are satisfied identically. The third equation

yields
(Z‘f )1 + (%lg + x)m =0 (7-2.6)

where (I, m) denote the components of the unit normal vector to the lateral surface S
bounding the simply connected region R (Fig. 7-2.2). By Fig. 7-2.2, we find

d
I=cos¢p = d—y
S (7-2.7)
=sing = _&
"= ds

Substitution of Eq. (7-2.7) into Eq. (7-2.6) yields

dfdy pdx  dx dy
axds apds ds ' ds 2d( +) (7-2.8)

Furthermore, by Fig. 7-2.2, we have

dx dx dx _ dy

& & dn (729)
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y

Figure 7-2.2

Consequently, Egs. (7-2.8) and (7-2.9) yield

d _Wde dydy 1d

= = 2 4y 7-2.1
dn  Oxdn dydn 2ds(x ) ( 0

For a circular cross section of radius a@,x? +)* = a* = constant. Then Eq.
(7-2.10) yields dy/dn =0 on S, or y = constant on S. This result agrees with
that obtained in Section 4-19.

In general, we note that if the cross section is noncircular Eqs. (7-2.6), (7-2.7),
and (7-2.9) yield the result

ay )
%.—yl xm = f(s) (7-2.11)

where f(s) denotes a function of the parameter s on the bounding curve § (Fig.
7-2.2).
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Finally, it may be shown (see the problem at the end of this section) that

Zgzr%mzo
J4

[
Zﬂ=uwﬂ=0 (7-2.12)

SM, = (x1,, —y1,,)dA =M
4

Accordingly, we have obtained a solution of the torsion problem of a bar with simply
connected cross section, provided y(x, y) satisfies the equations

Vi =0 inR
v (7-2.13)

d
Fn—:yl—xm:f(s) onS

Equations (7-2.13) define a well-known, extensively studied problem of potential
theory (Kellogg, 1969): The Neumann boundary-value problem.' In other words, the
torsion problem expressed in terms of the warping function ¥/(x, y) may be stated as
follows:

Determine a function (x, y) that is harmonic (V3 = 0) in R, such that it is
regular in R and continuous in R + S, and such that its normal derivative takes on
prescribed values f(s) on S.

Alternatively, Egs. (7-2.13) may be reformulated by utilizing the complex
conjugate of Y(x, y), that is, by utilizing the function y(x, y) related to (x, y) by
the Cauchy—Riemann equation (Churchill et al., 1989)*;

a a
W o W% (7-2.14)
ax  dy ay ax
Differentiating the first of Egs. (7-2.14) by y, the second by x, and subtracting, we
obtain V?y = 0. Substitution of Eqgs. (7-2.14) and (7-2.9) into the second of Egs.
(7-2.13) yields

1 1
Z—f:yl—xm:E%(f%—yz) or x:z(x2+ﬁ)+const

" A solution y to the Neumann problem exists, provided that the integral of the normal derivative of the
function i, calculated over the entire boundary S, vanishes. Then the solution ¢ is determined to within an
arbitrary constant. For the torsion problem [Eqs. (7-2.13)], the solution v exists (see Problem 7-2.1).

2 See also Eqgs. (5-5.3) in Chapter 5.
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Accordingly, in terms of the complex conjugate y of 7, Egs. (7-2.13) may be written

Viy=0 inR
1 (7-2.15)
x=5(x2+y2):g(s) on S

where the constant in the second equation has been set equal to zero, as it does not
affect the state or stress or displacement [see Egs. (7-2.3), (7-2.4), and (7-2.14)].
In terms of y, the strain and stress components are, by Egs. (7-2.3), (7-2.4), and

(7-2.14),
a b
szzﬁ(gx—y)’ 'sz: —ﬂ(a_i—x) (7-216)

and

9 9
T, = Gﬁ(a—i - y), T, = —Gﬁ(a—i - x) (7-2.17)

The boundary-value problem defined by Eq. (7-2.15), that of seeking a harmonic
function y in region R, whose values are prescribed on the boundary S of R, is
known as the Dirichlet problem. The Dirichlet problem has been studied extensively
(Kellogg, 1969; Courant and Hilbert, 1989).

Problem Set 7-2

1. Verify the first two of Egs. (7-2.12). Verify that a solution i to the Neumann problem exists
for the torsion of a bar [see Egs. (7-2.13)).

7-3 Prandtl Torsion Function

In the preceding section we formulated the torsion problem of the bar with simply
connected cross section in terms of two associated boundary-value problems [see
Egs. (7-2.13) and (7-2.15)]. In this section we consider an alternative approach
originally formulated by Prandtl (1903).°> Prandtl employed the semi-inverse
procedure as follows.

Because in the classical torsion problem the lateral surface and the end planes of
the bar are free from normal tractions, one might initially guess that the normal
tractions are zero throughout the bar. Furthermore, because the end faces are
subjected to shear stress components that produce a couple M, one might initially

3 As we will see, the results obtained by Prandti are related simply to those obtained by Saint-Venant.
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assume as a first guess that the shear component not associated with the couple M
also vanishes. Then one has (with respect to x, y, z axes designated in Fig. 7-2.1)

6,=0,=0,=71,=0 (7-3.1)

Next, because the left and right end planes are loaded identically, it appears
reasonable that the remaining two components of stress (z,,, T,,) are approximately
independent of the axial coordinate z. Accordingly, assuming that 7,7, are

functions of (x, y) only and substituting Egs. (7-3.1) into Egs. (7-1.1), we find

arxz 81)’2 —
re + E}— =0 (7-3.2)

Equation (7-3.2) represents the necessary and sufficient condition that there exist a
function ¢(x, y) such that (see Chapter 1, Section 1-19)

¢ ¢

Tyz 2‘5, ‘L'yz = -—a (7-33)

where here the function ¢ is called the Prandtl torsion function.

Equation (7-3.3) automatically satisfies the equation of equilibrium [Eq. (7-3.2)].
Substitution of Egs. (7-3.1) and (7-3.3) into Eqs. (7-1.5) yields

Vi = % + % = ¢ = constant (7-3.4)

Accordingly, compatibility is satisfied provided V2¢ = c. The constant ¢ may be
shown to have a physical significance in that it is related to the angle of twist. Before
verifying this statement, we consider the boundary conditions on the lateral surface
and on the end planes [Egs. (7-1.4)]. The first two of Egs. (7-1.4a) are satisfied
automatically; the last of Eqs. (7-1.4a), with Egs. (7-2.7) and (7-3.3), yields (see Fig.
7-2.2)

dp _opdx  dpdy

== —==0 S
ds dxds dyds on

or
¢ =K =constant  onS (7-3.5)

where K denotes an arbitrary constant. For the simply connected cross section we
may set K = 0 (see Section 7-6).
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Finally, substitution of Egs. (7-2.7) and (7-3.3) into Egs. (7-1.4b) yields the
following integrations over the end planes:

Y F. = Japx dx dy = ”sz dx dy

o
Y2

dx

A4

> Fy= Japydxdy:Jerzdxdy
dp 2

= — —_— = — d

deJaxdx J¢x1 ly

ZMz:M:JJ(XTyznysz) dx dy

=— ”(x% +y%) dx dy

Z_P¢ @-L@ja+2”¢m@

Because ¢ = constant on the lateral surface [we take K =0 for the simply
connected region; see Eq. (7-3.5)] and x;, x,,v,, ¥, denote points on the lateral
surface, it follows that

_—_Ja’xJ%%dy:Jd)

X2
X1

YF =0, YF=0, ZMz:M—;Z”qb dx dy (7-3.6)

By the above discussion, we see that the torsion problem for a simply connected
cross section R is solved precisely, provided we obtain a function ¢ such that

V2$ = ¢ = const in R
(7-3.7)
¢=0 onS
and provided the shears 7,,, 7, are distributed over the end planes in accordance with
Eq. (7-3.3). The twisting moment M is then defined by Eq. (7-3.6). The constant ¢
may be related to the angle of twist per unit length of the bar, as we now proceed to
show,

Displacement Components. Substitution of Egs. (7-3.1) and (7-3.3) into the
stress—strain relations [Eqs. (7-1.3)] yields with Egs. (2-15.14)
Ju dv ow ou dv
—_—= - —= 0, _— — =0
wow & Ty =5 T
ou ow 1 dv + aw 1 .
= — —_— = —=T,,, 7 — — ==T,
e = Y& TG Ty By G

(7-3.8)
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Integration of Eqs. (7-3.8) yields
u=—Az(y — b), v = Az(x — a) (7-3.9)

where A4 is a constant of integration and where x = a, y = b defines the center of
twist, that is, the z axis about which each cross section rotates as a rigid body (see
Section 4-19; there, a = y = 0 denotes the axis of twist).

Substitution of Egs. (7-3.9) into the last two of Eqs. (7-3.8) yields

aw 1
a __G_sz +A(}1-—b)
(7-3.10)
w1 o — A )
¥y G roa
Integration of Eqgs. (7-3.10) yields
w = wy — A(xb — ya) (7-3.11)

where wy = wy(x, y) represents the warping of the cross section. The terms involving
the constants (a, b) in Egs. (7-3.9) and (7-3.11) represent a rigid-body displacement
relative to the center of twist.

To determine the angle of twist per unit length of the bar, we recall that the
rotation w, of a volume element relative to the z axis is [see Egs. (2-13.2)]

1 /dv Ou

Substitution of Egs. (7-3.9) into Egs. (7-3.12) yields @, = 4z. Hence, the angle of
twist § per unit length of the bar is

d
=2 _ 4 (7-3.13)
oz

Therefore, the constant of integration 4 in Egs. (7-3.9) is identical to the angle of
twist per unit length of the bar. Furthermore, by the last two of Egs. (7-3.8), we note
that by differentiating v , by y and 7y, by x and subtracting, we obtain

dw d (v ou 1 /o ar
28 — Z_ | ) =z -3.1
p=2 0z 0z (3x 8y) G < ax Y ) (7-3.14)
Hence, substitution of Eq. (7-3.3) into Eq. (7-3.14) yields [with Eq. (7-3.7)]
&
V2¢=82¢+ ¢ =c=-2Gp (7-3.15)

P2
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Accordingly, in terms of the Prandtl stress function ¢, the torsion problem of a bar
with simply connected cross section R bounded by S is defined by

Vip =—-2Gf inR
¢=0 on S

(7-3.16)

For the case where a = b = 0, the warping displacement wy(x, y) is related to the
warping function y(x, y) by the equation [see Eqs. (7-2.2) and (7-3.11)]
wo = BY(x, ») (7-3.17)

Furthermore, the Prandt! stress function ¢(x, y) is related to the warping function
Y (x, y) by the equation [see Egs. (7-2.4) and (7-3.3)]

op (3 0p (0 ]
—@——Gﬁ<a—y>, = Gﬁ(ay+x) (7-3.18)

and to the complex conjugate y of Y by the relations [see Egs. (7-2.14), (7-3.3), and
(7-3.18)]

ap ay P ay
= L =GB~ 7-3.19
=P (ay g ) o= <8x x) (73.19)
Integration of these relations yields
¢ = GBIy —L(? +%) + b] (7-3.20)

where b denotes a constant. Thus, the Prandtl stress function ¢ may be simply
related to the Saint-Venant warping function  [Eqgs. (7-3.18)] or to the conjugate
harmonic function y of  [Eq. (7-3.20)].

Problem Set 7-3

1. Show that cylinders with circular cross sections are the only bodies whose lateral surface
can be free from external load when the stress components are characterized by

=0, T, = —GBy, 1, = Gfx




510 PRISMATIC BAR SUBJECTED TO END LOAD

7-4 A Method of Solution of the Torsion Problem: Elliptic Cross
Section

A direct approach to the solution of the torsion problem is difficult in most practical
cases. However, in terms of Prandtl’s stress function ¢, the following indirect
approach is sometimes useful, although it is not generally applicable.

Because ¢ =0 on the lateral boundary [Eq. (7-3.16)], we may seek stress
functions ¢; such that ¢; = 0 on the lateral boundary of the shaft, leaving sufficient
arbitrariness in ¢ so that the equation V2¢p = —2Gf8 may be satisfied over the region
R occupied by the cross section. For a certain class of cross sections with boundaries
simply expressible in the form f(x, y) = 0, this procedure is sometimes fruitful.

Example 7-4.1. Bar with Elliptical Cross Section. The equation of the bounding
curve C of a bar with elliptical cross section is (Fig. 7-4.1)

2
f(x,y):a—2+}bi2—1=0 (7-4.1)

Hence, if we assume a stress function ¢ in the form

¢=A(f—2+}i 1) (7-4.2)

az b2

y
(x2/a2) + (»2/b2) = 1

d

e Qv ——P]

X

f———————— g ——————

Figure 74.1
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where A is a constant, the boundary condition ¢ = 0 on C is automatically satisfied.
To yield a solution to the torsion problem, the function ¢ must be chosen so that
both of Egs. (7-3.16) are satisfied. By Eq. (7-4.2) we find that

1 1
24
Vg =24 (a—2 + ﬁ)
Hence, in order that ¢ satisfy Eq. (7-3.16) we must have

a*b*Gp
=22 7-4.3
4 a’ + b (7-43)

Accordingly, if 4 is given by Eq. (7-4.3), Eq. (7-4.2) yields the solution of the
torsion of a bar with elliptic cross section. With ¢ so determined, the theory of
Section 7-3 yields the stress components (z,;, 7,,) and the moment M in terms of the

dimensions a, b of the cross section, the shear modulus G, and the angle of twist f§
per unit length of the bar.

Momeni-Angle of Twist Relation. The moment-stress function relation [Eq.
(7-3.6)], with Eqs. (7-4.2) and (7-4.3), now yields

u= - 2GPeY [i Jsz dx dy + %“ ¥ dxdy — ” dx dy] (7-4.4)

210 @

Now, for the ellipse,

3h
‘”x2 dedy=1,= e
3
” Pdvdy =1 = % (7-4.5)

JJ dx dy = nab

where (/,, 1,) denote the moment of inertia of the cross-sectional area with respect to
the (x, y) axes, respectively. Consequently, Eqs. (7-4.4) and (7-4.5) yield

nGpa’h’
“aip = (740
where
343
_mbG (7-4.7)

a0
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is called the torsional rigidity of the bar. Equation (7-4.6) relates the twisting
moment M to the angle of twist f, the constant of proportionality being C, the
torsional rigidity.

Also, by Egs. (7-4.3) and (7-4.6), we find

M
A=-—" 7-4.8
nab ( )
Therefore, we may write ¢ in the form
M (2 )
d)——a(‘—;-}-ﬁ—l) (7-4.9)

Stress Components. By Egs. (7-3.3) and (7-4.9), we obtain

LB _ oM
xz = o T T 3

3ya¢ ”2‘;3 (7-4.10)
B = T na3bx

Hence, (1, t,,) vary linearly over the cross section with respect to (y,x),
respectively. To determine the direction of the shearing stress vector
T = it,, + jr,, on the boundary of the shaft, we note that the tangent of the angle
between the vector T and the positive x axis is given by [Eq. (7-4.10)]

T, b?
o 22 (7-4.11)

pv4 a y

However, by the equation of the bounding curve C of the cross section {Eq. (7-4.1)],

we see that the angle formed by the tangent to C and the positive x axis is

dy b’x
= m (7-4.12)

Equations (7-4.11) and (7-4.12) show that the shearing-stress vector T is tangent to
the boundary C of the cross section. Forx =a,y =0, 7 = i7,-; hence, 7 is directed
perpendicular to the x axis. For x =0, y = b, T = it,,; then 7 is directed perpen-
dicular to the y axis (see Fig. 7-4.2). Also, the magnitude of 7 is

_2M [x?y2

== 4 7-4.13
2t e = N A T ( )
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y
T
X
Figure 7-4.2
Determining the maximum value of 7 from Eq. (7-4.13), we find
2M
Tmax = w’ y=», x=0 (7-4.14)

For a circular shaft a = b = r; then t,,,, = 2M/7r?, everywhere on the boundary C.

Displacement Components. With § determined as a function of M and C [Eq.
(7-4.6)], the displacement components (1, v) are known for all points in any cross
section for a given moment and a given bar. They are u = —fyz, v = Bxz [Eq.
(7-3.9), with a = b = 0]. To compute the displacement component w, we must
compute ¥/(x, y), the warping function [Egs. (7-2.2) or (7-3.17)], from its relation to
the stress function ¢(x, y) [Eq. (7-3.18)].

By Egs. (7-3.18) and (7-4.9), we obtain

L S (- L

x  GBy nab’Gp
W 1oy [ 2M ) (7-4.15)
¥ GBax (na3bGﬂ *

——+Z§xy + const (7-4.16)
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Y

X
S~ \\\ \
~ o NERN
~ o Ny
~ AV
N
a2\

Contour map

Figure 7-4.3

If we set w = 0 for x = y = 0, the constant in Eq. (7-4.16) is zero. Consequently,

=k = ﬁili— blf)
or
w = —Kxy (7-4.17)
where

_ P@>—b) M@ —-b)
T @+ naddhdG

(7-4.18)

Equation (7-4.17) is the equation of a hyperbola. Accordingly, the contour map of w
over the cross section of the bar is represented by a family of hyperbolas (Fig. 7-4.3),
with the (x, y) axes representing lines of zero displacement.

Because K is a positive constant, w is positive (in the direction of the positive z
axis) in the second and fourth quadrants and negative in the first and third quadrants
of the (x, y) plane.

Problem Set 7-4
1. Derive Eq. (7-4.14).

2. Apply the method outlined in Section 7-4 to the bar with circular cross section.




7-5 REMARKS ON SOLUTIONS OF THE LAPLACE EQUATION, V2F =0 515

7-5 Remarks on Solutions of the Laplace Equation, V*F =0

In the theory of complex variables (Churchill et al., 1989) it is shown that the real
and imaginary parts of an analytic function F of the complex variable z = x + iy
satisfy the Laplace equation V?F = 0; that is, the real and imaginary parts of an
analytic function are harmonic functions. Accordingly, by considering the real and
the imaginary parts of analytic functions F,, one may proceed, inversely so to speak,
to determine the equations of the boundaries of simply connected cross sections for
which the real and imaginary parts of F, represent solutions of the torsion problem.
For example, we have previously noted that f(z) = ¥ + iy is an analytic function
where y is the conjugate harmonic of the warping function y, and that the torsion
problem may be represented either in terms of Y or y (Section 7-3).

One of the simplest sets of analytic functions of the complex variable z = x + iy
is the set F, = z" = (x +iy)". By letting n = 1, £2, £3, ..., solutions of the
torsion problem may be developed in the form of polynomials. For example, for
n = 2, we obtain the solutions x> —y? and 2xy. For n = 3, we find x* — 3x)? and
3x2y — 3. For n = 4, we have x* — 6x%? + »* and 4x’y — 4x)?, and so on. Sums
and differences of these polynomial solutions may also be employed, as the sums
and the differences of harmonic functions yield other harmonic functions. A
systematic application of this technique to the torsion problem has been employed
by Weber and Giinther (1958). Here we merely present a classical example of the
method. Other examples are considered in the problems.

Example 7-5.1. Equilateral Triangle. Consider the harmonic polynomial
¢, = A(x* — 3xy°) (obtained from z", with n = 3), where 4 is a constant. Because
¢, is harmonic, by setting y = ¢,, we may write Prandtl’s stress function ¢ in the
form [see Eq. (7-3.20)]

(E7-5.1)

6= _Gﬁ[(x2 +3) =37 b]
2 2a

where a and b denote constants. If we assign the value 2a%/27 to the constant b, we
may factor Eq. (E7-5.1) into the form

¢=G—ﬁ(x——«/§y—2?a)(x+~/§y—-23£)(x+g) (E7-5.2)

2a

Accordingly, for b = 2a?/27, the condition that ¢ vanish on the lateral bound-
ary of a bar in torsion [Eqs. (7-3.16)] is satisfied identically by the three
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X, X,
2a
L ——-»-4—-—-—7——'
Figure E7-5.1
conditions
x—~/3y— 2_a =0
3
2
x+v§-"§=o (E7-5.3)
a
Z=0
x+ 3

Equations (E7-5.3) represent the equations of three straight lines in the (x, y) plane
that form an equilateral triangle (Fig. E7-5.1). The region bounded by the three
straight lines may be considered as the cross section of a bar in torsion.

Shear-Stress Components. By Egs. (7-3.3) and (E7-5.1), we find that the
shear—stress components are

:_Eﬂo+g

Xz a

(E7-5.4)
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Equations (E7-5.4) show that 7,, = 0 for y = 0 and for x = —a/3, and that 7, is
parabolically distributed along the y axis (x = 0).

Warping of Cross Section. Letting y = (x> — 3x?)/2a and integrating Egs.
(7-2.14), we obtain the warping function

¥ = zy—a(y2 -37)+C, (E7-5.5)

where C,, is a constant. If we set w = 0 for x = y = 0, then Eq. (E7-5.5) and the last
of Egs. (7-2.2) yield

w=%¢_w) (E7-5.6)

By Eq. (E7-5.6), we note that w = 0 for y = 0 and y = ++/3x. In general, the w
contour lines for which w = constant are described by the equation

¥ K

=4 (E7-5.7)
3y

where K = constant. If K > 0, x — oo as y — 0 and as y — oc. These conditions
facilitate the visualization of the contour map for w (Problem 7-5.1), where positive
w is taken in the direction of positive z where (x, y, z) for a right-handed coordinate
system. The sign of w changes upon crossing the lines y = 0 and y = £+/3x.
Consequently, the cross section warps into alternate convex (+w) and concave (—w)
regions.

Problem Set 7-5

1. Sketch the contour map for the warping of the triangular cross section under torsion [see
Eq. (E7-5.7) and Fig. E7-5.1].

2. Derive Egs. (E7-5.2), (E7-5.4), and (E7-5.5).

3. Considering terms obtained from the analytic function (x + iy)*, we can express a Prandtl
stress function in the form

2 4_ 4 _
¢:_GB|:x2—;—y _alx 6x;yz+y)+a21]

Set a = 0.2; plot the cross section of the bar for which ¢ solves the torsion problem.
Calculate the stress at the boundary point for which the radius vector forms an angle of
0 = 45° with the positive x axis. Use G = 12 x 10° psi, 8 = 0.001 rad/in. Compare the
result to that of a circle with radius equal to the radius vector of the plotted cross section at
0 = 45°. Repeat for a = 0.5. (In his investigations, Saint-Venant found that the torsional
rigidity of a given cross section may be approximated by replacing the given cross section



518 PRISMATIC BAR SUBJECTED TO END LOAD

with an elliptical cross section with the same area and the same polar moment of inertia.) Is
the circular approximation noted above a good approximation?

4. Choosing axes (x;, y,) at the tip of the equilateral triangular cross section (Fig. E7-5.1), by
means of Eqs. (7-3.6) and (E7-5.2) show that

_ Gpa*
T 1543

5. C. Weber proposed the following elementary method of examining the effects of a circular
groove or slot in a circular bar [for other kinds of groove and bar combinations, see Weber
and Giinther (1958)]: Considering a pair of harmonic functions x and x/(x> + y*) obtained
from z" with n = +1, Weber transformed the functions into polar coordinates (r, §). Thus,
x = rcos § and x/(x> 4+ y?) = (cos §)/r. Hence, he took [see Eq. (7-3.20)] a Prandtl stress
function in the form

G 0
¢:%qw—#+uw—wﬁ§% (@)
¥
where f is taken to denote the angle of twist per unit length. Setting ¢ = 0 on the
boundary, Weber obtained the equation of the boundary of the cross section as

(#—bh(l—%kwe)zo (b)

Equation (b) is satisfied identically by the conditions

- =0
(c)
r—2acosf =0
Equations (c) may be considered to represent the cross section R of a circular shaft with a
circular groove (Fig. P7-5.5). Hence, with Eq. (a), the stress components 1,,, 7,, may be
computed by Eqs. (7-3.3). Derive the formulas for 7,,, ,,. '

6. Using the results derived in Problem 5, derive formulas for the stress components 1,,, 7,
on the boundary of the shaft and on the boundary of the groove. Compute the maximum

value of stress on the boundary of the shaft; on the groove.

7. Compute ., in terms of M and a for a = 60°, « = 45°, and a = 30° (Fig. P7-5.5).
Compute 7 at the point P for these cases. Verify that 7, = 7,, = 0 for corners 4 and B.

8. For the cross section given in Problem 5, derive the formula for the torsional rigidity of the
member.

9. Consider the torsion of a shaft with circular cross section that varies along the axis of the
shaft. Let (r, 6, z) be cylindrical coordinates such that (r, 8) lies in the plane of the cross
section and z lies along the axis of the shaft. Thus, the radius of the circular cross section
varies with z. As in the torsion of a bar with constant circular cross section, assume that
u =w =0, where u, w denote displacement components in the (r, z) directions, respec-
tively. Because of the symmetry of the circular cross section, the displacement component v
in the 6 direction is independent of polar coordinate . The dependence of v on r and z is
difficult to guess. Hence, take v = v(r, z).
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Figure P7-5.5

(a) Determine the corresponding strain components of the shaft.

(b) For a linearly elastic, isotropic material, determine the corresponding stress compo-
nents of the shaft.

(¢) Express the equilibrium equations in terms of v.
(d) Show that there exists a torsion function F(r, z) such that F satisfies the equations of
equilibrium, provided

F 48w F N
W_raz<?)’ i ar(r)
(e) Show that the defining equation for F(r, z) is

¥F 30F 82F_0
r rar 92

(H) Determine the boundary conditions that F must satisfy. Hence, define the mathematical
problem that determines F. Hint: Consider a section of the shaft in the », z plane and
write the boundary conditions for the lateral surface of the shaft.
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7-6 Torsion of Bars with Tubular Cavities

Consider a bar with cross section R, where R is the multiply connected region
interior to C; and exterior to the longitudinal tubular cavities C,, C,, ..., C, (Fig.
7-6.1). As in the torsion problem of the simply connected cross section, the
displacement components are taken in the form

u=—pfzy
v = flzx (7-6.1)
w = f(x,y)

where f and y are a constant and a function of (x, y), respectively, which are to be
determined.

The shearing-stress components in region R are given by the relations [see Eqgs.
(7-2.9)]

oy oy
Ty = ﬁG<a _y>v Tyz = ﬂG(g +x) (7-62)
Because the boundaries C,, C,, C,,...,C, are free from external loads, the

boundary conditions are

Ity + mt,, =0 on C;, i=01,...,n (7-6.3)

Figure 7-6.1
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In terms of ¥/, the boundary conditions may be written in the form

d
—lp:ly—mx on C;

L i=0,1,2,....n (7-6.4)
dn

Introducing the stress function ¢, defined by Eqgs. (7-3.3), we may write the
boundary conditions in terms of the stress function ¢ in the form

o dp do ]
—— _— = — = . - Ky 1, “e ey 7_6.5
lay mo = 0 onC,, i=0 n ( )
or
o=K, onC,, i=0,1,2,...,n (7-6.6)

where the K; are constants.

In general, the function ¢ may be multiple valued. However, the function  is
determined by the boundary condition, Eq. (7-6.4), to within an arbitrary constant,
and it follows by Egs. (7-6.2) and (7-3.3) that the function ¢ is determined to within
an arbitrary constant. Consequently, the stress function ¢ defined by Egs. (7-3.3)
must satisfy the conditions of Eq. (7-6.6), where the value of only one of the
constants K; may be assigned arbitrarily. If the region R is simply connected (that is,
if there are no tubular cavities), { = 0, and ¢ = K, on C;;. The constant K, may then
be assigned an arbitrary value—for example, zero.

The remaining » constants must be chosen so that the displacement component w
[and hence ¥/, see Eq. (7-6.1)] is a single-valued function, the constants K; being
related to the function Y through Egs. (7-3.18) and (7-6.6) or to the complex
conjugate y of Y through Eqgs. (7-3.20) and (7-6.6). For example, the values of X
may be established so that the solution of the Dirichlet problem [with » = 0 in Egs.
(7-3.20)]

Vi =0 over R
1 =16%+)y) +K, i=1,.n on C;
Gﬁki:Ki

satisfies the conditions for the existence of a single-valued function in a multiply
connected region.*

4 See Eqs. (7-2.15) and the discussion at the end of Section 5-4 in Chapter 5, particularly Egs. (5-4.24) and
(5-4.25). Here, m =n and G = y.
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Substituting Egs. (7-3.3) into Eqgs. (7-6.2), differentiating the first of Eqgs. (7-6.2)
by y and the second by x, and subtracting the resulting equations, we obtain the
condition

V2¢p = —2GB  inregion R (7-6.7)

The twisting moment M that results from the shearing forces that act on the end
plane of the bar is

M= JJ (xTyz _ysz) dx dy (7'68)
over R
Substituting Eqgs. (7-3.3) into Egs. (7-6.8), we obtain
3 99
M=— — — -6.
Jj (xax+yay)dxdy (7-6.9)

over R

Equation (7-6.9) may be written in the form

M= ” 26 dx dy — ” [a(;_;m + a_(;%] dx dy (7-6.10)
over R over R

Transforming the second integral of Eq. (7-6.10) by Green’s theorem for the plane
(Section 1-16), we may write Eq. (7-6.10) in the form

M=2 ” ¢dxdy=§ Pxdy—y d) (7-6.11)

i
over R

Because we may assign the value of one of the K|s in Eq. (7-6.6) arbitrarily, let K
on the boundary C, be zero; that is, let ¢ =0 on C;. Then, substitution of Eq.
(7-6.6) into Eq. (7-6.11) yields

M=2 JJ pdxdy+ Y K, ® (ydx—xdy)
over R =! G
Noting that

%C(ydx—xdy)z?~ JJ dx dy = 24,

over A4;

where 4; is the area bounded by the curve C;, we obtain

M= 2H pdxdy+23 K, (7-6.12)
i=1

over R



7-7 TRANSFER OF AXIS OF TWIST 523

Equation (7-6.12) is the moment—stress function relation for the torsion problem of
bars with multiply connected cross sections. Alternatively, by means of Egs. (7-3.20)
and (7-6.12), M may be expressed in terms of the function y.

Problem Set 7-6

1. For the hollow circular shaft of inner radius @ and outer radius b, by the above theory,
evaluate M using the stress function ¢ = A2 — b?).

7-7 Transfer of Axis of Twist

In the previous analysis of the torsion problem, we assumed that any cross section of
the beam was subjected to an infinitesimal rotation @ about a z axis. No assumption
was made as to the location of the z axis relative to the cross section. In calculations,
it may be convenient to choose a particular z axis. Hence, let us consider an axis z;
that is parallel to the axis z, but that intersects the (x, y) plane at point (a, ). With
respect to the z; axis, the displacement components are

up=—Pzy —b) vy =pzAx—a),  w =) (7-7.1)

where y,, not necessarily identical to ¥, is the warping function with respect to the
z; axis (see also Review Problem R-4, p. 571).
In terms of the stress function ¥, the stress components are

0
d -

T, = Gﬁ(J/—jl—}—x— a) (7-7.2)
dy

6,=0,=0,=71,=0

Substitution of these stress components into the equilibrium equations [Eqs.
(7-1.1)] yields the result
Py, | Py,
Ox?

+L=0 (7-1.3)

2
V l//l = ayz

Also, the boundary conditions [Egs. (7-1.4)] reduce to the condition
d
%(tpl +bx —ay) =1Ily —mx (7-7.4)

Now the function i, + bx — ay is harmonic, and it satisfies the same boundary
conditions as the warping function . Hence, by the uniqueness (Courant and
Hilbert, 1989) of solution of the problem of Neumann, ¢ and ¥, + bx — ay can



524 PRISMATIC BAR SUBJECTED TO END LOAD

differ only by a constant; that is, ¥, = — bx +ay + ¢, where ¢ is a constant.
Consequently, the displacement components measured with respect to axis z; are
given by the formulas

up = —pzy + Pzb
v, = fzx — Pza (7-7.5)
wy = By + fya — pxb + fc

These components differ by a rigid-body displacement from those with respect to the
z axis [Egs. (7-2.2)]. Consequently, the stress components are identical with those
with respect to the z axis. Thus, the choice of the origin of coordinates is immaterial
in the torsion problem of the bar with regard to the stress components.

7-8 Shearing—Stress Component in Any Direction

Directional Derivative. Let P(x, y) be any point on a curve in the (x, ) plane. Let
the scalar function ¢(x, y) be defined on C with its partial derivatives d¢/0x and
a¢ /dy; for example, ¢ may be the stress function in torsion. Let O: (x + Ax, y + Ay)
be a point on C in the neighborhood of P (see Fig. 7-8.1). Let As be the length of arc

As Q:(x+Ax,y+Ay)

P:(x,y)d o

Figure 7-8.1



7-8 SHEARING-STRESS COMPONENT IN ANY DIRECTION 525

PQ and A¢ be the change in ¢ due to increments Ax and Ay. Then, the derivative

dp . Ad
;l;_AllenoAs

determines the rate of change of ¢ along the curve C at the point P: (x, y). Now the
total differential of ¢ is

dp = % dx+%;édy
and

dp_dpds b dy

ds oxds odyds
Also,

dr_ lim Ax—cosoc
ds  As—0As

dy . Ay .
&~ Am 3, = sine

Hence, d¢/ds = (3¢p/ax) cosa + (d¢/dy) sin a. By this equation, it is apparent that
d¢/ds depends on the direction of s. For this reason, d¢/ds is called the directional
derivative. It represents the rate of change of ¢ in the direction of the tangent to the
particular curve chosen for point P: (x, y). For example, if o« = 0,

d¢ _ ¢
ds ~ ox

is the rate of change of ¢ in the direction of the x axis.

Maximum Value of the Directional Derivative: Gradient. Consider two
neighboring curves in the (x,y) plane; say, C and C + AC (Fig. 7-8.2). Let the
respective values of ¢ on these curves be ¢ and ¢ + A¢. Then A¢p/As is the average
rate of change of ¢ with respect to the distance As measured from curve C to the
curve C + AC. Now consider the ratio An/As, where An denotes the distance from
C to C + AC measured along the normal to C at point P: (x, y). The limiting value of
this ratio is cos f3; that is,

dn An — cosf
ds  AcSoAs
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y
C+AC

Figure 7-8.2

Hence,

d¢ dodn do
o dnds dn P

Therefore, d¢/dn, that is, the derivative of ¢ in the direction normal to C, is the
maximum value that d¢/ds may take in any direction. Hence, (d¢/ds),.x =
{d¢/dn). The vector in the direction of the normal, of magnitude |d¢/dn|, is
called the gradient of ¢; that is, (¢,, ¢,) = gradient ¢ = grad ¢, where (x, y)
subscripts on ¢ denote partial derivatives. Consequently, the maximum value of
d¢/ds is equal to the magnitude of the gradient of ¢, |grad ¢|.

Stress Component-Directional Derivative. Consider an arbitrary point
P: (x,y) in the cross section of a bar in torsion (Fig. 7-8.3). The stress component
Ty in the direction  is

Ty = Ty, cos 6 + 1, sin 0
In terms of the stress function ¢, by Egs. (7-3.3),

e 9
Ty T
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o direction

Figure 7-8.3
Therefore,
0 d
Tg = —¢c039 - —¢sin0
dy ox

= ¢,cos0 — ¢, sinf

Now set @ = 0 + n/2. Then

79 = ¢, cos (oc —g) — ¢, sin (cx —g)
d¢

= ¢, cosa+ ¢, sino = —-

ds

Consequently, 7, is equal to the directional derivative of ¢ in a direction leading 6 by
90°. Note that if the direction o corresponds to a direction for which ¢ = constant,
d¢/ds = 0. Hence, the shearing stress perpendicular to the line ¢ = constant is
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zero. Therefore, lines ¢p = constant are shearing—stress trajectories, and the stress
vector on lines ¢ = constant has magnitude

|Tgl = (¢>f + </>§)1/2= (%)max: |grad ¢|

The stress vector is tangent to lines ¢ = constant.
In polar coordinates (r, f) (see Fig. 7-8.4),

1 a¢ acp
% = 7-8.1
Y T T (781
For example, in terms of polar coordinates (r, §), the Prandtl stress function of a
circular shaft with circular groove is [see Eq. (a), Problem 7-5.5]

cos } (7-8.2)

¢ =G—9[b2 — P +2a( — b')——
2 r

where here 0 denotes the unit angle of twist. Consequently, Eqgs. (7-8.1) and (7-8.2)
yield

10 GOa .
. =;5§= — 25 — 6)sin

. _ 0 _ 4 5 2
Tp=1p, = g_GHI:r r2(r +b)cosﬂ]

T, =1

(7-8.3)

Ts

/

Figure 7-8.4
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Thus, for § = 0 and » = b (Fig. P7-5.5 and Problem 7-5.5) we have
7,, = 0, 74, = —GO(2a — b)

and for § = 0 and » = 2a (point P in Fig. P7-5.5) we obtain

Go.  ,
7,, =0, ‘E/gz:E(4a — b°)

rz

Problem Set 7-8

1. Plot out several shearing—stress trajectories for the cross section shown in Fig. P7-5.5.

7-9 Solution of Torsion Problem by the Prandtl Membrane Analogy

In this section we consider an analogy method proposed by Prandtl (1903)° that
leads itself to the obtaining of approximate solutions to the torsion problem.
Although this method is of historical interest, it is rarely used today to obtain
quantitative results, and it is treated here primarily from the heuristic viewpoint.
The analogy is based upon the equivalence of the torsion equation (7-3.15)

Vip = —2Gp (7-9.1)

and the membrane equation

Viz=— (7-9.2)

where z denotes the lateral displacement of a membrane subjected to a lateral
pressure g in terms of force per unit area and an initial (large) tension S (Fig. 7-9.1)
in terms of force per unit length.

For example, consider an element ABCD of dimensions dx, dy of a membrane
(Fig. 7-9.1). The net vertical force due to the tension S acting along edge AD is
(assuming small displacements so that sin o = tan o)

0
—Sdysina ~ —S dytana = —§ dya—z
X

>See L. Prandtl (1903), p. 758. Another analogy method, a hydrodynamic analogy, has been proposed by
E. Pestel (1955a, 1955b); see also G. Grossmann (1957). We discuss only the analogy proposed by
Prandtl.
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Figure 7-9.1

and similarly the net vertical force due to the tension .S (assumed to remain constant
for sufficiently small values of g) acting along edge BC is

a
S dytan oc+—adx :de3 z+%dx
ax ax ax
Similarly, for edges AB and DC we obtain

oz d 0z
-8 dx—, S dx— z—+——dy)
dy 3y< dy

Consequently, summation of force in the vertical direction yields for equilibrium of
the membrane element dx dy

#z #z
—dx d — =
S8x2 x y+Say2dxdy+qudy 0
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or

Viz=—

i

Prandtl showed that the shearing—stress components in a straight elastic bar in
torsion may be related to the slopes of a membrane (soap film) extended over a hole
in a flat plate and subjected to a small pressure g, the hole having the shape of the
cross section of the bar and the membrane being attached to the boundary of the
hole.

By comparison of Egs. (7-9.1) and (7-9.2), we arrive at the following analogous
quantities:

z=co, % — 2Gp (7:9.3)

where ¢ is a constant of proportionality. Hence,

% 520, (7-9.4)
q/S  2Gp q

Accordingly, the membrane displacement z is proportional to the Prandtl stress
function ¢, and because the shearing—stress components ,;, 7,, are equal to the
appropriate detivatives of ¢ with respect to x and y [see Eqgs. (7-3.3)], it follows that
the stress components are proportional to the derivatives of the membrane displace-
ment z with respect to the coordinates (x, ) in the flat plate to which the membrane
is attached (Fig. 7-9.1). In other words, the stress components at a point (x, y) of the
bar are proportional to the slopes of the membrane at the corresponding point (x, y)
of the membrane. Consequently, the distribution of shear—stress components in the
cross section of the bar is easily visualized by forming a mental image of the slope of
the corresponding membrane. Furthermore, for simply connected cross sections,
because z is proportional to ¢, by Egs. (7-3.6) and (7-9.4) we note that the twisting
moment M is proportional to the volume enclosed by the membrane and the (x, y)
plane (Fig. 7-9.1).

For the multiply connected cross section, additional conditions arise. For
example, consider the cross section shown in Fig. 7-6.1. For this cross section,
Eq. (7-6.12) shows that the twisting moment M is proportional to the integral of ¢
over R plus twice the sum of the products of area of the holes and the corresponding
constant values of ¢ on the boundaries of the holes. With regard to the membrane
analogy, one must then consider a membrane stretched over region R in such a
manner that the membrane has a constant value on a boundary of a hole. Such an
effect may be obtained if one stretches a membrane over a flat plate Py with a cutout

corresponding to region R and with flat plates P, P,, ..., P, placed over the holes
Ay, 4,, ..., 4,, the plates P, P, ..., P, having appropriate heights z;,z,,...,z,
with respect to the holes 4, 4,, ..., A,. For example, for a cross section with a

single tubular hole, the equivalent membrane is shown in Fig. 7-9.2. This simple
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Rigid plate 7,

Membrane for plate with
single hole

Figure 7-9.2

idea can be extended to » holes. On the basis of the directional derivative concept
[see Section 7-8 and particularly Egs. (7-8.1)] and the membrane analogy, we see
that for a curve C on the membrane defined by z = constant (that is, for
¢ = constant) the shear—stress resultant 7 is everywhere tangent to the curve (Fig.
7-9.3), where by Eq. (7-8.1),

_ %  d¢
=== " on C (7-9.5)

Considering the equilibrium of the part of the membrane enclosed by C, we find
gd = JS sin 0 ds (7-9.6)

where 4 denotes the plane area bounded by C (Fig. 7-9.4).
By Fig. 7-9.4 and Eqgs. (7-9.4) and (7-9.5), we have

a
sinH:——{=~@L k|

an_ dn2GBS _ 2GBS

(7-9.7)
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Hence, Eqs. (7-9.6) and (7-9.7) yield
J tds =2GpA (7-9.8)
c

Accordingly, for multiply connected regions Eq. (7-9.8) becomes (see Figs. 7-6.1
and 7-9.2)

J T ds = 2GPA; (7-9.9)
C,

i

where C; denotes the boundary of the plane area 4,.

Several cross sections and their associated membranes are shown schematically in
Fig. 7-9.5.

Some useful conclusions may be drawn from consideration of Fig. 7-9.5. For
example, noting that by Eqgs. (7-4.6) and (7-6.12)

M=2“¢dxdy+ZZk:KiA,-=C/3 (7-9.10)
i=1
R

it appears from Fig. 7-9.5 that for a bar with circular cross section and a given angle
of twist (that is, for a given pressure ¢ and tension S for the associated membrane),
the required moment M is not changed as greatly by cutting a concentric circular
hole in the shaft as it is cutting a concentric circular hole and slit in the shaft (Figs.
7-9.5b, ¢, and d). Calculations bear out this observation.

Certain kinds of approximations may also be suggested by examination of the
membrane. For example, if the wall thickness of a circular tube is small (Fig.
7-9.5b), then by Eq. (7-9.10) we have, with k = 1,

R

where K| is the value of ¢ on the boundary of the hole and 4, is the area of the hole.
Other approximations of this type are often employed in practice (Weber and
Giinther, 1958).

Example 7-9.1. Narrow Rectangular Cross Section. Consider a bar subjected to
torsion. Let the cross section of the bar be a solid rectangle with width 2a and depth
2b, where b >> a (Fig. 7-9.6). The associated membrane is shown in Fig. 7-9.7.
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Figure 7-9.6

Except for the region near x = +b, the membrane deflection is approximately
independent of x. For a given x, the deflection with respect to y is assumed to be

parabolic. Then
2
z=zo[1 - (g) ] (a)

Hence,

2z
Viz=— a_20 (b)

By Egs. (b), (7-9.2), and (7-9.3), we may write V’z = —2zy/a®> = —2¢Gp or

¢ = Gﬁaz[l = (g)z] ©)
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Consequently, Egs. (7-3.3) yield

3¢
Txz = 5; = _ZGﬂyv Ty = 0 (d)
and the last of Egs. (7-3.6) yields
b a 16
M=2J J d)dxdy:?Gﬁcfb (e)
—bJ-a

By Eqgs. (d), we note that the maximum value of |1,,| is 7,,,, = 2Gfa for y = +a.

In summary, we note that the solution is approximate, and in particular the
boundary conditions for x = £b are not satisfied. See also Timoshenko (1976) for
the case of a narrow trapezoid.

Problem Set 7-9

1. A torsion bar has a cross section in the shape of an isosceles triangle of height » and base
2b, with & >> b. Let (x, y) axes be defined such that the origin is at the center of the base,
with the x axis in the height direction. Define the torsion function to be
¢ = Gb*p[1 — (y/b)z], based upon the membrane of the cross section.

(a) Derive expressions for the corresponding stress components.
(b) Determine the formula for the torsional rigidity in terms of G, b, h.
(¢) Examine the boundary conditions and discuss them.

7-10 Solution by Method of Series. Rectangular Section

In Example 7-9.1 the torsion problem of a bar with narrow rectangular cross section
was approximated by noting the deflection of the corresponding membrane. In this
section we again consider the rectangular section —a < x < a, —b <y < b, but we
discard the restriction a < b (Fig. 7-10.1).

By visualizing the membrane corresponding to the cross section of Fig. 7-10.1,
we note that the torsion stress function ¢ must be even in x and y. Also, we recall
that in terms of ¢ the torsion problem is defined by the equations

Vip = —2GB over R

6=0 on C (7-10.1)

By Example 7-9.1, we have seen that GB(a? — x?) is a particular integral of the
first of Egs. (7-10.1). Accordingly, we take the stress function ¢ in the form [see also
Eq. (7-3.20)]

¢ = GB@® — x*)+ V(x, ) (7-10.2)
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y

Figure 7-10.1

where V(x, y) is an even function of (x, y). Substitution of Eq. (7-10.2) into Eqs.
(7-10.1) yields

V2V =0  overR
V=0 forx = +a (7-10.3)
V = GBp(* — a?) fory = =+b
Equations (7-10.3) represent a special case of the Dirichlet problem (Sec. 7-2).

We seek solutions of Egs. (7-10.3) by the method of separation of variables. Thus,
we take

V =f(x)g() (7-10.4)

where f(x) and g(y) are functions of x and y, respectively. The first of Egs. (7-10.3)
and (7-10.4) yield

VIV =Gf"+g'f=0 (7-10.5)
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where primes denote derivatives with respect to x or y. In order that Eq. (7-10.5) be
satisfied, we must have

1! /1t
o _&g_ _p (7-10.6)

f g

where A’ is a positive constant. Hence,
T+ A2f=0, g —2g=0 (7-10.7)
The solutions of Egs. (7-10.7) are

f =Acosix + Bsin Ax

7-10.8

g = C cosh Ay + Dsinh iy ( )

Because V' must be even in x and y, it follows that B = D = 0. Consequently, the
function ¥ takes on the form [Eq. (7-10.4)]

V = A cos Axcosh 1y (7-10.9)

where 4 denotes an arbitrary constant.
To satisfy the second of Eqgs. (7-10.3), Eq. (7-10.9) yields the result

A="E p=1,3,5,... (7-10.10)
2a

To satisfy the last of Egs. (7-10.3) we employ the method of superposition
(V2V = 0 is a linear, homogeneous partial differential equation), and we write

o0
V= Y Ancos@cosh— (7-10.11)
n=1,3.5... 2a

Equation (7-10.11) satisfies V°¥ = 0 in R, provided the series converges and is
termwise differentiable (Churchill, 1941). Equation (7-10.11) automatically satisfies
the boundary condition for x = ta. The boundary condition for y = £b yields the
condition [Egs. (7-10.3)]

I _ GRGE — a?) = h(x) (7-10.12)

C =
3 ', COS >

n=1,3.5,
where

nmh
C, =4, cosh—Z; (7-10.13)
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By the theory of Fourier series, we multiply both sides of Eq. (7-10.12) by
cos (nmx/2a) and integrate between the limits —a and +a to obtain the coefficients
C, as follows:

nmnx

dx (7-10.14)
2a

1 a
C, = ~J h(x) cos
a -—d

Because A(x) cos (nmx/2a) = GP(x*> — a*) cos (nmx/2a) is symmetrical about
x = 0, we may write

2 a
C, = ﬂj (o — az)cos@dx
a 0 2a

or

a

C, :ﬁj xzcos@dx—ZGﬁaJ cos T2 dx
a Jp 2a 0 2a

Integration yields (see Pierce and Foster, 1956, Formula 350; or Ryzhik, 1994)

_ —32Gpa3 (1)

C, = (7-10.15)
Hence, Eqgs. (7-10.11), (7-10.13), and (7-10.15) yield
20 1y{n—1)/2
4, = _32Ghax 1zmb (7-10.16)
n3w cosh——
2a
and
302G’ (— =172 cos?cosh%@
¢ =Gp@® —x*) ———= “b a (7-10.17)
T n=135,... n coshﬂ

Note that as coshx = 1 +x2/2! +x*/4! + ..., the series in Eq. (7-10.17) goes to
zero if b/a — oo (that is, if the section is very narrow b >> ). Then Eq. (7-10.17)
reduces to

¢ ~ Gp(a* — x*) (7-10.18)

This result verifies the assumption employed in Example 7-9.1 for the slender
rectangular cross section.
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By Egs. (7-3.3) and (7-10.17), we obtain

(n—1)/2
ad) _ 16Gﬁa i ( 1) COS 2 1nh

T, =—=— 2a
dy (3 2 cosh—z—b
a
(7-10.19)
Dn=1r2 hnn)’
o ad)_zGﬂ _16G,Ba o (=1 sm2 cos a
” L n? coshib
2a
By Egs. (7-3.6) and (7-10.17), the twisting moment is
b a
M:2J J ¢dxdy=CB=GJp (7-10.20)
—bJ—a

where J, a factor dependent on geometry of the cross section, is
b pa
J=2J J (@® —x%) dx dy
—bJ—a

642 % (—1)yrD2 b qa
- —? 3 (—-——)——bJ J (cosﬂcosh —) dx dy
T n=13,5 “n3 coshﬂ —bJ—a 2a

Integration yields (see Pierce and Foster, 1956, Formula 489; or Ryzhik, 1994)

3 o0
J= (2a)"(2b) [1 _1_9_2(%) 3 Ltanh@] (7-10.21)

3 7[5 n=1,3,5,... n5 2a

The factor outside the brackets on the right side of Eq. (7-10.21) is an
approximation for a thin rectangular cross section, because the series goes to zero
as b/a becomes large.

In general, Eq. (7-10.21) may be written in the form

J = k,(2a)’(2b) (7-10.22)
where
1 192 sa o0 nnb
2249 7-10.
k=3 [1 —~ (%) 3 n5 tanh } (7-10.23)

Equation (7-10.20) may then be written in the form
M = Gk, (2a)*(2b) (7-10.24)

Values of k, for various ratios of b/a are given by Timoshenko and Goodier (1970).
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Problem Set 7-10

1.
2.

Verify Eq. (7-10.21).

With b > a, show that the maximum shear for the rectangular cross section (Fig. 7-10.1)
occurs at x = a, y = (. Hence, show that
Tmax = 2Gfak
where
8 X 1

k=1-— S S—
72 (35, n? cosh (nnb/2a)

. Derive the warping function for the rectangular cross section. Consider the case a = b, and

sketch in contour lines.

. Calculate z,,, 7, at the indicated points in the cross section (Fig. P7-10.4). Calculate J [Eq.

(7-10.21)].

f——1 in.———»

)( 2in.
iy
N

M =1000 1b in.

Figure P7-10.4
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y

a/2 \B

af?

Figure P7-10.5

5. Consider a shaft with a sector cross section with angle « and radius a (Fig. P7-10.5). Let
(r, B) denote polar coordinates. Let the torsion stress function ¢ be given by
¢ = V — G6r? /2, where here 0 denotes the unit angle of twist. By the method employed
in Section 7-10, show that

¢ = Go —r2<1 - COSZﬁ) -1-—16‘120(2 i (_1)(n+1)/2(£)""/°‘ cos (nnf /o)

2 _ 2 2
cosa T a=13.5,. n(,, 4 _a) (n — a)
T T

6. Consider the torsion problem of a shaft whose cross section is shown in Fig. P7-10.6
(opposite page). Assume a stress function of the form ¢ =V —1G6?, where V is a
function of » alone, G denotes the shear modulus, 6 denotes the angle of twist per unit
length of the shaft, and # is the radial polar coordinate. For #/a < 1, derive an expression
for ¥ in terms of a, h, and r. Hence, derive an expression for the shearing stress 7. Discuss
the validity of the solution in the vicinity of § = n/2.

7-11 Bending of a Bar Subjected to Transverse End Force

Consider a prismatic elastic bar fixed® at the end z = 0 and subjected to a lateral
force P at the end z = L (Fig. 7-11.1). The cross section of the bar is contained in
region R bounded by the surface S. We restrict discussion to the case of simply
connected regions R (see Sections 7-2 and 7-6).

® For example, the conditions at z = 0 may be taken such that the displacement components u = v =
w=0atx=y=1z=0, and the rotation w =0 at x =y =z =0.
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YI' Thin slit

/

Figure P7-10.6

We let the origin of axes (x, y,z) be located arbitrarily in the cross section at
z = 0. Furthermore, we take the x axis coincident with the line of action of force P.
Then summation of forces on the end face z = L yields

PX:JJszdXdy:P’ P :PZ:M :M :Mz:() (7-111)

Accordingly, overall equilibrium of any portion of the bar (say, between the sections
z=z, z =1L, Figs. 7-11.1 and 7-11.2) requires that

” T, dx dy = P, “ ogxdxdy =—P(L—2)
” T, dxdy = ” o, dxdy = ijaz dx dy (7-11.2)

= JJ (xt,, —y71) dxdy =0

It follows from the first two of Egs. (7-11.2) that 7,,, and o, are not zero. Also, in

general, 7,, is not zero by the last of Egs. (7-11.2).
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Following the semi-inverse method of Saint-Venant, we seek solutions such that
0., T, T, are the only nonvanishing stress components; that is, we assume that

0,=0,=1,=0 (7-11.3)

Furthermore, we taken the simplest linear dependence on (x, y) for the component
o_; that is, we assume that ¢, is proportional to Ax + By + C, where A4, B, C are
constants. More explicitly, on the basis of the second of Egs. (7-11.2) we assume that

g, = PAx+By+ C)(L —2) (7-11.4)
Substitution of Eq. (7-11.4) into Egs. (7-11.2) yields the result

Al + Bl +CS, = —1
AL, + Bl +CS, =0 (7-11.5)
AS, + BS, +CS, =0

where (1., ly,v’ Ixy) and (S, Sy) are the moments of inertia and the first moments,
respectively, of the area of the cross section of the bar relative to axes (x, y), and S is
the area of the cross section of the bar.

Equations (7-11.5) are three linear algebraic equations in the unknowns 4, B, C.
Solving Egs. (7-11.5), we obtain

LySo— 82 _ SE—1.5

A=-""3 A
B— LySo — 5iS, (7-11.6)
A
IS -1
C=""2 _¥2_ _4x—By
A
where
I, I, S,
A=\, I, S, (7-11.7)
S, S, S

and X, y denote the coordinates of the center of gravity of the area of the cross
section.
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In the absence of body forces (X =Y =Z =0). Eqgs. (7-1.1), (7-11.3), and
(7-11.4) yield

o, Ot
N a‘;’Z o (7-11.8)
X4 -2 = P(Ax + By + C
o + B (Ax + By + C)

It follows by the first two of Egs. (7-11.8) that 7, 7,. are independent of z.
Furthermore, the last of Egs. (7-11.8) may be written in the form

a—i [rﬂ - g(sz + Cx)} + % |:‘cyz — g(Byz + Cy)] =0 (7-11.9)

By the theory of Section 1-19, Eq. (7-11.9) represents necessary and sufficient
conditions that a function F' exist such that

P PoF
— (AP -7
Tys 2(x—I-C) S
P PoF
Tyz——(By2+C)——‘2'$
or
P|oF
== — 4 Ax* + Cx
2 ay
(7-11.10)
P e
] I "R

Hence, if 7., and t,, are expressed in the form of Egs. (7-11.10), the equations of
equilibrium are satisfied. Furthermore, as 7,, and 7,, are independent of z, it follows
that F = F(x,y). The governing equations for F are the compatibility equations
[Egs. (7-1.5)] and the boundary conditions [Egs. (7-1.4)]. Substitution of Eqgs.
(7-11.3), (7-11.4), and (7-11.10) into Egs. (7-1.5) yields

J 2vA
—(V2F) = —
ay(V ) L+v
0 2vB
—(V’F) =

ax( ) 1+v

Integration yields

2
V2F=1—£—(Bx—Ay)—2CO over R (7-11.11)
Vv
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where C, is a constant of integration that may be interpreted physically [see Section
7-12; see also Eq. (7-11.29)].
The boundary conditions [Egs. (7-1.4a)] reduce to /t,, + mzt,, = 0 or

dy dx

szg—‘fyzgz (7-1112)
where [see Eq. (7-2.7) and Fig. 7-2.2]
dy dx
== =—— -11.
I m p (7-11.13)
Substitution of Egs. (7-11.10) into Eq. (7-11.12) yields
oF dx d
P+ E_utr+ e, ons (7-11.14)
as ds ds

Equation (7-11.11), which holds over region R, and Eq. (7-11.14), which holds on
the lateral surface S, are the defining equations for F.

The above results may be simplified somewhat by noting the nature of Egs.
(7-11.11) and (7-11.14), and representing F' in terms of two new functions. Thus, we
set

F=T+Cyp (7-11.15)

Then Egs. (7-11.11) and (7-11.14) yield

Vi =-2
2v over R (7-11.16)
2T = (Bx—4
v 1+v( x — Ay)
and
2—¢=0 or ¢ =0 (Section 7-6)
ali 0 p on S (7-11.17)
el - G S 7 e Y g
s ds ds

By Egs. (7-11.16) and (7-11.17), we see from the theory of Section 7-3 that ¢
(except for the constant factor Gf) is the Prandt] stress function. Accordingly, the
problem of the bending of the cantilever bar subjected to transverse end load may be
expressed in terms of the Prandtl stress function of torsion and an auxiliary function
I', which must satisfy the last of Eqgs. (7-11.16) and (7-11.17). The function I’ is
called the flexural function or the bending function.
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If (x, ) are axes of symmetry with origin at the centroid of the section (then x, y
are called principal axes of the cross section),

B=C=0, A=-——=—- (7-11.18)

where I denotes /,,,. Then, analogous to the principal-axes theories of stress (5,; = 0,
i #j) and strain (¢; = 0, i # /), axes (x,y) are called principal axes of inertia
(1, = 0). With x a principal axis of inertia of the cross section, the equations for the
flexural function [Egs. (7-11.16) and (7-11.17)] reduce to

Vi = 12_:‘))}/ over R
7-11.19
or  x*dy ( )
w1
s s

For a certain class of problems it is convenient to redefine I" in terms of two
functions, as follows:

r:%w@n+mm (7-11.20)

where W is a function of both x and y, and 4 is a function of y only.” Then Egs.
(7-11.19) become

2v P 4
VY = ! —y——f over R
14+v7] dy (7-11.21)
¥ (P 7 dy s o
s~ \ I ds on

where /= dh/dy = f(y). The objective of the substitution of Eq. (7-11.20) is to
arrive at simpler boundary conditions. For example, if we can choose f* such that

Px? d
- = = 7-11.22
( 7 f) s 0 on S ( )
then
ﬂ =0 onS (7-11.23)
0s

7 This substitution was employed by S. P. Timoshenko (1913) to solve the problem of flexure of certain
kinds of cross sections (Sections 7-14 and 7-15).
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and as R is a simply connected region, it follows that we may take (see Section 7-6)
Y =0 on S (7-11.24)

We will employ this technique below to obtain the solution of the flexure problem for
the rectangular and the elliptic cross sections.

Alternatively, we may seek solutions of Eq. (7-11.11) by taking a particular
integral in the form of a polynomial in x and y. For example, we may express F in the
form

v

F=h=n+ 305

(B — 4%) — %Co(xz + %) (7-11.25)

where V2h = 0; that is, /4 is a harmonic function. Then the problem of bending of a
bar by transverse end force transforms into seeking a function such that [see Egs.
(7-11.10), (7-11.11), and (7-11.14)]

Vih=0 over region R

oh

Eg-:

d d
(B + cy)d—;‘ 4+ Cx)d—i)

v dx v dy
B —Cx =+ [ —— A+ Cy | = S (7-11.26
+(1+v * Ox)ds+<1+v v+ 0y)ds on ( )

where the stress components are given by

Te =£|:a—h+A(x2 _W )+Cx—C0y:|

2|9y 1+v

Pl oh
tyzzil:_gc"i’B(yz_

(7-11.27)

vx?
+ Cy + C,
n ) 34 oX:|

1+v

For principal axes of the cross section, B=C =0, 4 = —1/I, and Eqgs. (7-11.26)
and (7-11.27) are simplified accordingly.

Determination of the Constant of Integration, C,. The above formulation of
the flexural problem of the bar (cantilever beam) subjected to end force P is
complete except for the determination of the integration constant C;, [Eq. (7-11.11)].
We find that if we substitute Eqs. (7-11.10) into Egs. (7-11.2), all the equations are
satisfied identically with the exception of the last equation, that is,

M, = JJ (1), —y1.)dxdy =0 (7-11.28)
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The constant C, must be chosen to satisfy Eq. (7-11.28). Accordingly, if we employ
the definitions of Egs. (7-11.10) and (7-11.15), we obtain, after some calculations,

COJ_[¢ dx dy = —JJFdxdy —%JJ(By—Ax)xy dx dv

—§(@3+q¢§—m£+0@@Rﬁu (7-11.29)
ds ds
where the double integrals are evaluated over R, the line integral is taken over S, and
1 A
R, = 3 (xdy —y dx) (7-11.30)
Jo

For principal axes of the cross section, B = C = 0, 4 = —1/I, and Eq. (7-11.29) is
simplified accordingly. With Eq. (7-11.29), the formulation of the problem of
bending of a bar subjected to transverse end load is complete.

In general, C; # 0. Hence, there is twisting of the bar (torsion) when a transverse
end load is applied arbitrarily. It is for this reason that the Prandtl torsion function
[Egs. (7-11.15) through (7-11.17)] enters into the bending problem of bars.

The constant C,, may be related to the average rotation of a cross section of the
bar with respect to the axis z. For example, for the state of stress defined above, we
obtain by Egs. (7-1.3)

. P
g:@:—%:—%wﬁﬂﬁ{wrd

P
¢ =5 (Ax+ By + O)L —2) (7-11.31)

1

Ty = 0, Yoz = Erxz* Vye = Eryz

where
_du o _Ow
*ox’ Yooy >
_8u+81) _8u+8w _~817+8w
Vo = ay  ox’ P T T =T g ay

and where E is the modulus of elasticity and v is Poisson’s ratio of the material. With
Egs. (7-11.31), the three strain compatibility equations of the type (sec Chapter 2,
Section 2-16)

326 32€y _ 8272)0,

X

a2 ax dy
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are satisfied identically. Also, the equation

2&-3(%__}_@):2_%_
xdy #\dx

is satisfied. The remaining two equations of compatibility simplify to

8 (ﬁ ~ ayxz> __2wPB

ox \ o E
¥\d oy (7-11.32)
D (I Bye\ _ 2vPA
ay \ ox /) E
Integration of Egs. (7-11.32) leads to
3y,, oy 2vP
- —E o (- A -11.
oy z (—Bx+ Ay) + 2K (7-11.33)

where K is a constant of integration.
Recalling the definition of y,,, 7,,, and , in terms of (u, v, w) [see Eqs. (2-15.14)
and (2-5.3)], we note that Eq. (7-11.33) may be written as

dw, VP
=—(-Bx+4 K
™ E( x + Ay) +

The term , is the angle of rotation of an element of volume in the rod about the z
axis. The term d(w,)/dz is thus the twist of fibers in the rod parallel to the z axis.
Integration of the twist over the cross section R of the bar yields the result

00 VP _Br+ A 1+ K (7-11.34)
0z E
where
5, =+ [ w, dxa
w, = —
: SOJ , dx dy
1
xX=— dexdy (7-11.35)
S, |
o dx dy
=51

denote, respectively, the average value of the angle of rotation w,, the x value of the
centroid of the cross section, and the y value of the centroid, and S, denotes the area
of the cross section. Accordingly, by Eq. (7-11.34), the integration constant K may
be related to the average angle of rotation of a cross section about the z axis.
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Furthermore, if the x axis is an axis of symmetry, B =y = 0. Then d(®,)/0z = K.
However, because x is an axis of symmetry (a principal axis passing through the
centroid of the cross section), @, = 0. Hence, when x is a principal axis passing
through the centroid of the cross section, K = 0.

Alternatively, the compatibility condition, Eq. (7-11.33), may be expressed in
terms of 7,, and 7, by means of the last two of Egs. (7-11.31). Then, by Egs.
(7-11.10), the compatibility relation may be formulated in terms of the function F.
This latter expression, with Eq. (7-11.11), yields the result

E
Co=—-K 7-11.36
T+ wP ( )
Accordingly, the above remarks made with regard to K hold also for the constant Cj,.
For example, the constant C, defined by Eqgs. (7-11.29) vanishes when x is a
principal axis. In general, C; is related to the mean rotation «, by Egs. (7-11.34) and
(7-11.36). That is,

dw, (1 +v)P
z E

[1 i ~(~B% + 47) + CO] (7-11.37)

Remark on Solution of V?y = F(x, y). The basic equation of the theories of
torsion and of bending of bars is of the form

VZy = F(x,) (7-11.38)

where y must satisfy certain requirements on the lateral surface of the bar [see, for
example, Egs. (7-2.5), (7-2.10), (7-2.13), (7-2.15), (7-3.10), (7-11.11), (7-11.14),
(7-11.16), (7-11.17), (7-11.21), (7-11.26)]. In general, Eq. (7-11.38) is a linear,
nonhomogeneous, partial differential equation of second order. Because it is linear, it
may be transformed into an equivalent homogeneous equation. The following basic
theorem holds for the equivalent homogeneous case (V?¢ = 0) (Churchill, 1993).

Theorem. If ¥y, )»,...., are n solutions of a homogeneous linear partial
differential equation, then Cy, + Cyyy +---+ Cyx, is also a solution, where
C,,C,,...,C, are arbitrary constants.

Any function of x and y that satisfies Eq. (7-11.38) identically is called a particular
integral. There are in general an infinite number of particular solutions to Eq.
(7-11.38). Because of the linear character of Eq. (7-11.38), the sum of a comple-
mentary function (x, xp,---.%,) and any particular integral will satisfy Eq.
(7-11.38). In the torsion and bending problems of bars, the solution of Eqg.
(7-11.38) must also satisfy the boundary conditions. In general, the boundary
conditions are extremely complex. Particularly, we have seen that in general the
bending problem of a bar entails both bending and twisting [see Egs.(7-11.11),
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(7-11.15), (7-11.16), and (7-11.17)]. In Section 7-13 we will examine explicitly the
conditions under which a bar loaded by a transverse end force will bend without
twisting of its end section about the z axis. By application of the conditions for
which twisting of the end section is eliminated, we obtain some simplification of the
boundary conditions.

Problem Set 7-11
1. Derive Egs. (7-11.6).
2. Derive Eq. (7-11.29). Simplify the results for principal axes of the cross section.

3. Verify that all but the last of Egs. (7-11.2) are satisfied by Eq. (7-11.10).

7-12 Displacement of a Cantilever Beam Subjected to Transverse End
Force

In this section we derive formulas for the (x, y, z) displacement components (i, v, w)
for the stress components defined in Section 7-11. Hence, our task is to integrate
Eqgs. (7-11.31).

By the third of Egs. (7-11.31) we have

ow P
—==Ax+By+C)L -2
z FE

Integration yields
PL P
w:F(Ax+By+C)Z—E(Ax+By+C)zz +f(x,y) (7-12.1)

where f(x, y) denotes a function of (x, y) only.

To obtain expressions for the displacement components (u, v), we consider
simultaneously certain of Eqgs. (7-11.31) and Eq. (7-12.1). In the development of
these expressions it is convenient to employ the following transformations. As noted
by Egs. (7-11.25) and (7-11.26), the bending problem of the bar may be defined in
terms of a harmonic function 4. Now we introduce a function g(x, y), the conjugate
harmonic of A(x, y), defined by the relations

dg oh g oh )
B_k & _ 0 g 7-12.2
P A VA £ (-122)
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Then, with Egs. (7-11.27) and (7-12.2) and the last of Egs. (7-11.31), we obtain

_8u+8_w_(1+v)P|:3_g+A(x2_TV)_j~V)+Cx_COy]

T = T T E |ox
ov oaw (1+v)P[og vx?
'})yz——a—z ‘87— E [a—y+B()/z—m +Cy+C0x

By the first of Eqgs. (7-11.31) and (7-12.3) and Eq. (7-12.1), we find

Ju vP
w4 L —
o E(x+By+C)( z)

u_(+P [gg——i—A(xz —i> +Cx—C0y:|

2  E ax 1+v
PAL P4 of

E T2E°
Equations (7-12.4) are compatible, provided that

azgg-f)__(2+v)Ax vB C
a2 1+v 1+v 14v

where

Ef
(1+v)P

~1
Il

Similarly, we find

av vP

& T Ux+B -

Py E( x+By+ C)(L —2)

o (1+v)P[og , w2 PBL  PB

== ZoplA-2 Y+ _= i

% E [3y+ (y T3y) TOTE | g AT
and

#g-f) _ v4  Q@+wB  C
3 1+ 14y 0 14w

Finally, differentiation of the equation

_au 81}_0
[ Y

(7-12.3)

(7-12.4)

(7-12.5)

(7-12.6)

¥
ay

(7-12.7)
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with respect to z yields

Feg—f)_ v
ey 1t v(Bx+Ay) (7-12.8)

Equations (7-12.5), (7-12.7), and (7-12.8) require that [with Eq. (7-12.6)]

_(1+wP PA (2 +v 4
/="F g+2E<3x n

PB 24v 3\ PC
+ﬁ(—vx2y+—7—y>+ﬁ(x2 +y5) = Bx+ay+ 7, (7-12.9)

where a, 5, y, are constants.

With Egs. (7-12.1) and (7-12.9), the displacement component w is now deter-
mined in terms of the harmonic function g. Next, we substitute the expression for f
into the equations for du/dz and dv/dz to obtain [with Eq. (7-11.36)]

au:—Ky—E{A[Lz 2 V(xz_yz)] —vay—vi}+[3

x E T2 2

. (7-12.10)
3 P
a—lz)sz—E{—vAxy+B|:Lz—5+g(X2 —yz)] —va} — o

From the equations for 8u/dx and du/dz, we determine u in the form

P L2 2 v v,
= —Kyz— {4~y - ~ B(L — -
u Kyz z [A[ > 3 +2(L 2)x? +2y z:l—f-v (L — 2)xy + vC(L z)x]

+ Bz + F1(»)
where F|(p) is an unknown function of y. Similarly, we find

L7 —£+§(L — 2 +§xzz] +vC(L ——z)y}

P
v:K)CZ—E{VA(L—Z))cy—I-Bl:2 3

— oz + Fo(x)

where F,(x) is an unknown function of x.
The functions F(y) and F,(x) are determined by the condition

ou av_

8y+&_0
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Hence,

vPAL

F0) =—5 V=t
vPBL

Fy(x) = ——x" +x+ By

where ay, 5y, 7 are constants.
In summary, by the analysis above we have determined the displacement
components (u#, v, w) in the form

23
u= —Kyz—g{A[%Z——%Jrg(L—z)(x2 —yz):I +vB(L—z)xy+vC(L—z)x}
-+ Bzt a

3

-z —yz)] +vC(L — z)y}

L7?
2 6 2

P
v:sz—E{vA(L—z)xy—i—BI:
5 — az + o
I 22\ 2+4v.5 v
—g4+-14 - —
w g+E[ [x(Lz 2>+ 6 x nyZ:|
z? Vo, 24V, 1
+ By Lz =% ) — 2y + P |+ C| Lz + = (P +y* — 2°)
2 2 6 2
—Px+ay+7y, (7-12.11)

where ag, B4, Yo, % B, 7 are constants and

(1+v)Pg

7-12.12
- (-12.12)

g=

In Eq. (7-12.11), the terms in oy, By, o, &, f, y represent a rigid-body displacement
(see Chapter 2, Section 2-15 and Problem 2-15.1). To evaluate the rigid-body
displacement, we may require that the displacement (u, v, w) and the rotation
(@,, @,, @,) be prescribed at a point (x, y, z).

Problem Set 7-12

1. Discuss conditions that may be employed to evaluate o, By, ¥4, @, B,y of Egs. (7-12.11).
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7-13 Center of Shear

The condition for which there occurs no twisting of the end section of a bar loaded
by transverse end force is defined from Eq. (7-11.37) by settling the twist
d(,)/ 0z = 0. Thus, we obtain

v
Co=——@Bx—4y -13.
0= 13y B~ 4) (7-13.1)

as the necessary and sufficient condition that the twist vanish. In general, if C; is
defined by Eq. (7-13.1), the moment M, does not vanish. For example, in general,

M, = JJ (xt,, — y1y.) dx dy (7-13.2)
Accordingly, with Egs. (7-11.10), (7-11.15), and (7-13.1), Eq. (7-13.2) yields
M, = P[ﬁ(B)'c — Ay) JJ(]S dx dy + JJF dx dy + -;—JJ(By — Ax)xy dx dy
+ ?j; [(By2 + Cy)% — (4 + Cx) %]RS ds] (7-13.3)

Thus, Eq. (7-13.3) defines the moment that must be applied to the end of the bar,
together with a force P directed along the x axis, to give zero average twist of the
end. By elementary statics and Saint-Venant’s principle, we replace the moment M,
and the force P acting along the x axis by a force P;, parallel to P and equal in
magnitude to P, but located at a distance y; from the x axis, where

M, _ _ 1
V= _Fz :%H(—Bx +Ay)JJ¢ dx dy — le" dx d —EJJ(By—Ax)xy dx dy
dx ) dy
- ﬂ(Bﬁ +Cy) o — (A + O g]Rs ds (7-13.4)

The above theory defines bending of a bar with zero average rotation when a
force P is applied parallel to the x axis at a distance y; from the x axis. Similarly, if a
force P is applied parallel to the y axis, it must be located at a distance x; from the y
axis for bending of the rod with zero average rotation of the end, where, as with the
computation for y; [Eq. (7-13.4)], we find

X, = %H(bi—aj/)”d) dxdy—l—JJydxdy-+—%JJ(by—ax)xydx dy

d
+ §$ [(by2 + cy)% — (@ + dx) —‘%]RS ds (7-13.5)
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where over the cross section R

V= %(bx — ay) (7-13.6)
and on the boundary §
Y= f{;[(byz + cy)j,—z — (ax* + cx)%] ds (7-13.7)
and where
azm, b:w, C:W (7-13.8)

where A is defined by Eq. (7-11.7).

The intersection of the lines x = x;, y = y; locates a point in the (x, y) plane. This
point is called the shear center, because if a transverse force is applied at (x;, y;), it
produces zero average twist of the end of the rod.

It may be shown that the location of the shear center may be determined provided
the solution of the torsion problem is known; that is, in general, it is not necessary to
know the solution to the bending problem to compute (x;,y;) (see Problems 1
through 4 below). In the strength of materials definition of shear center, Poisson’s
ratio is usually discarded.

Problem Set 7-13

1. With the fact that (Green’s theorem)

” (FV2G — GV?F) dx dy = %(F% - G%) ds (a)

where F and G are functions of (x, ), let F = ¢, G =T, take into consideration Egs.
(7-11.16) and (7-11.17), and show that

2v
14+v

”d)(Bx—Ay)dxdy-f—ZJJFdxdyz—{)F% ds (b)

2. Noting by Egs. (7-2.4) and (7-3.3) that

0 _W_ o__w_

dy  ax > x (@)
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where the factor G has been absorbed in ¢, show that [with Eqs. (7-2.7), (7-2.9), and
(7-11.30)]

0p _dgdx dpdy __ay . dR, ®

an  oxdn 5y—dn T s ds
Hence, show that

op W _dR,
ff)r%ds_ %F(ngst)ds

= {mp + st)g ds

= ff(ll/ + 2Rs)[(Bf + Cy)% — (A + ) Z—ﬂ ds (©

3. With Eqgs. (7-2.7) and Eq. (a) of Problem 1, show that

_ dx dy
I= ff’ x//[(Byz + Cy)a — (4 + Cx)a;] ds
—— || er + owr+ e+ conl axay
X
= -2[[ux+ay+ O axay

- “ [(By2 + Cy)gl!/— + (Ax? + %) %] dx dy
ay ax

Hence, with Eq. (a) of Problem 2, Eq. (a) of Problem 1, and the fact that ¢ =0 on § fora
simply connected region R [see Eq. (7-11.17)], show that

1= —2”(Ax+By+ Oy dxdy+”(By—Ax)xydxdy
4. With the results of Problems 1, 2, and 3 above, show that

14+v
dx dy
- ﬂ(zgyz + Cy)g — (4x* + Cx) £:|Rs ds

” Tdx dy = —~V—” $(Bx — Ay) dx dy

+Jj(Ax+By+C)lp dx dy—%J[(By—Ax)xydxdy
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Hence, show that [see Egs. (7-13.4) and (7-13.5)]

= —”(Ax—f—By—l—C)l//dxdy-f-l—:_v”[B(x——)'c)—A(y—jz)](b dx dy

v (7-13.9)
X; = JJ(ax+by+c)|/l dxdy+mJJ[b(x—i) —aly — )¢ dx dy
Equation (7-13.9) shows that if the solution to the torsion problem for region R is
known—that is, if either ¢ or ¥ is known [see Eq. (a) of Problem 2]—the coordinates

(;, ¥;) of the shear center may be calculated. In other words, (x;, ;) may be determined
even though the solution of the bending problem (F =I' 4+ Cy¢) is not known.

5. Show that when the cross section of a bar has one axis of symmetry, the shear center will
lie on this axis. Show that when the cross section of a bar has two axes of symmetry, the
shear center coincides with the intersection of these two axes.

6. Show by calculations and examples that the shear center of a cross section of a bar does not
necessarily lie in the region R occupied by the cross section.

7-14 Bending of a Bar with Elliptic Cross Section

In this section we consider a technique introduced by Timoshenko (1921, 1913) for
solving the bending problem of bars for certain types of cross section. The
motivation of the method lies in seeking to represent the boundary conditions
[taken in the form of the second of Eqs. (7-11.21)] in the simplest possible form. For
example, for a simply connected cross section we may choose f(y) to make the right
side of the second of Eqgs. (7-11.21) equal to zero. Then, 3% /ds = 0 on S. Because
the cross section is simply connected, it follows that ‘¥ may be taken equal to zero on
S (see Section 7-6). We illustrate the method for a bar with elliptic cross section.

For an elliptic cross section, the lateral surface of the cross section is defined by
the equation

f+_=1 (7-14.1)

where (a, b) denotes the major and minor semiaxes of the ellipse. Accordingly, the
right side of the second of Eqs. (7-11.21) vanishes identically, provided we set

Pa?
fO) =57 0" =) (7-14.2)

Substitution of Eq. (7-14.2) into the first of Egs. (7-11.21) yields

2Py (a? v
Vi =2 — 7-14.3
1 (b2+1+v) (7-14.3)
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The boundary condition ¥ = 0 on S [see Eq. (7-11.24)] will be satisfied if we take
¥ in the form

2
Y(x, y) =D(;+;)i2— l)y (7-14.4)

where D = constant. Substitution of Eq. (7-14.4) into Eq. (7-14.3) yields

P( a*b? a? v
p="(2" L+ 1 -14.
1(3a2+b2)(b2+1+v) (7-14.5)

With the cross section defined by Eq. (7-14.1), the axes (x,y) are axes of
symmetry. Hence, with the resultant force P directed along the x axis, Cy = 0 (see
Section 7-11). Then Egs. (7-11.10), (7-11.15), (7-11.20), and (7-11.21) yield the
following expressions for the stress components 7, T,

1[3\11 Lr sz]

T = 5| o - T

2Ly 1 (7-14.6)
__la¥

e T T

Substitution of Egs. (7-14.2), (7-14.4), and (7-14.5) into Egs. (7-14.6) yields

PR (1404w (¥ 3 : 2y .
=G [araeasm 1) -G 14

(1 4 v)a® + vb? Pxy
T = ———— 3.
” (1 +v)@a2+b%) I

The normal stress component g, for this case (4 = —1/1, B = C = 0) is found from
Eq. (7-11.4) to be

o,

= w-9 (7-14.8)
Equation (7-14.8) agrees precisely with elementary beam theory. However, the
shearing—stress components differ from results predicted by elementary beam theory.
Elementary beam theory predicts that t,, vanishes everywhere and that 7., is a
function of x only.

If b « a, Eqs. (7-14.7) may be approximated by the equations

Pxy

P 2
_g(a —x), =37

(7-14.9)

TXZ

Then, t,, agrees with the stress component computed by elementary theory.
However, again ,, is in disagreement with elementary theory although it is very
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small (because y is small; it is at most equal to b). The maximum value of 7,
predicted by Eq. (7-14.9) is (for x = 0)

Pa? _ 4P

== -14.1
(rxz)max 31 3A (7 0)
where I = Aa?/4, where A = cross-sectional area of the ellipse.
By Egs. (7-14.7), the maximum value of 7, is (for x =y = 0)
Pa? (1 4+ v)a® + vb?
=l 7-14.11
(tdmax = 77 [ 1+ (32 1 b?) ( )

Again, for b « a, Eq. (7-14.11) yields the result given by Eq. (7-14.10).

Bar with Circular Cross Section. If in the above analysis we let a = b, the
cross section of the bar becomes circular. Thus, for the circular bar we obtain from
Egs. (7-14.7)

rxz=5[l+2v <x2+3y2—a2>—(x2+y2—a2>]

r1ad +v) (7-14.12)
1+2v Pxy '
T, = — —
¥z 41 +v) [
Hence
34 2v Pa?

= 7-14.13
(sz)max 8(1 + V) I ( )

7-15 Bending of a Bar with Rectangular Cross Section

Consider a cantilever beam with rectangular cross section R and with lateral surface S.
Let end load P be applied to the end of the bar (beam) and directed along the vertical
centroidal axis (x axis, Fig. 7-15.1). The cross section is defined by the equation

- —b) =0 (7-15.1)

By the theory of Section 7-11, the beam undergoes bending with no twisting of the
end plane (4 = -1/, B=C=C, =0).

Because the net load P is equivalent to shear-stress components 7., 7,,
distributed over the end of the bar, we may employ the semi-inverse method by
assuming simple distributions for t,,, 7,, and then attempt to satisfy the elasticity
equations. For example, as ) F, = P, ) | F,, = 0, it appears reasonable to assume 7,

to be odd in y and t,, to be even in x and y (see Fig. 7-15.1). Furthermore, we
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employ the technique demonstrated in Section 7-14 for the elliptic cross section.
Hence, taking f = Pa?/I and noting the nature of the dependency of (,,, T,.) On X
and y, we find by Eqgs. (7-14.6) that ¥ is even in x and odd in y. Also, by choosing
f = Pa*/I and noting that dy/ds = 0 for y = +b, by Egs. (7-11.21), we obtain

2v P
VY = 4 over R
1+v 1 (7-15.2)
¥Y=0 onS

By inspection, a particular solution of the first of Egs. (7-15.2) is
¥, =4+ By (7-15.3)

Substitution of Eq. (7-15.3) into Eq. (7-15.2) yields

vP
A=—-—"— 7-15.4
31+ v ( )
with B arbitrary.
By the discussion at the end of Section 7-11, we choose ¥ in the form
vP
¥Y=Q0+—)y'+B 7-15.5
3axnr Y (7-15.5)
where by Egs. (7-15.2) and (7-15.5)
V:Q=0 on R
vP (7-15.6)
Q=————y"—B S
saqw” T
Let us choose® B so that Q = 0 for y = &b. Then, Eq. (7-15.6) yields
vPb?
B=———— 7-15.7
3(14+v) ( )
Thus, by Eqs. (7-15.5) and (7-15.6), we arrive at the stress function
vP 3 9
= — (" — b 7-15.8
HE T A (7-15.8)

& Note that we could assume a particular solution of Eq. (7-15.2) in the form 4)* + B. Then we could
choose B so that Q = 0 for y = b, but Q would not be zero on the line y = —b. Hence, our choice of ¥,
[Eq. (7-15.3)] leads to a simpler boundary condition for Q.
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where
VZQ=0 onR (7-15.9)
and

Q=0 fory =+b

vP (7-15.10)
Q=—— () -)* =+
3(1+v)l(by y) for x a
Because W is even in x and odd in y, Q is even in x and odd in y.
Consider solutions of Eq. (7-15.9) of the form
Q =/(x)g (7-15.11)

where f(x), g(y) are functions of x and y, respectively. Substitution of Eq. (7-15.11)
into Eq. (7-15.9) with the requirement that 2 be even in x and odd in y yields
solutions of the form.

Q = A cosh kx sin ky (7-15.12)

where A and k are constants.

Substitution of Eq. (7-15.12) into the first of Egs. (7-15.10) yields
Acoshkxsinkb =0,0rk =nn/b,n=1,2,3,.... Hence, superposition of solutions
of the type given by Eq. (7-15.12) yields

X
Q=53 4, cosh%msin% (7-15.13)
n=1

Let A, cosh(nna/b) = a,. Then, by Eq. (7-15.13) and the second of Egs. (7-15.10),
we must require that

nmy vP

o0
i =—(b%y —)? 7-15.
ngla,,sm b 3(1_+_v)1(by V) ( 14)

Muitiplying Eq. (7-15.14) by sin(mny/b) and integrating from —b to b, we obtain

2 b nmy . mmy vP b mmy
LRy —d —__ " b2 _ 3 . Py _ ]
'lglan J_b sin—~sin—=dy Ty, J_b( 'y —y°) sin 5 dy  (7-15.15)
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Observing that

b 0, m#n
J smwsm@dy {
—b

b b b, m=n

b mi2

-1"b

J ysin dy = _ 207
~b

mn

b my 4
3. My 2(=1)"6" 5 ,
J_by s1n—b dy = g (m°m” - 6)

we obtain after integration of Eq. (7-15.15)

4P (—1)"
a, =————
n (1 + v n3n’

Hence, the constant 4, in Eq. (7-15.13) is determined, and the stress function ¥ is
given by the formula

coshn sm—nny
P 1263 = (-1)"
e Z( 3) b___ b (7-15.16)
3+ 7 op=1 N cosh——

Then, because f = Pa?/I, substitution of Eq. (7-15.16) into Egs. (7-14.6) yields

osh nxcosnny
P P 1262 2 (—1)" COS 7~ COS 7™
sz__(a - 2)+—v—_ Y _bz Z( ) bnnab
21 6(1 +v)I n= cosh==
mzx . nny
__wPp =l sinh ==sin = (7-15.17)
(14D n? cosh@

Equations (7-15.17) express the solution to the bending of a cantilever beam with
rectangular cross section and with load P directed along the vertical centroidal axis
in the end plane z = L.

Examination of t,,. On the horizontal line x = 0, Egs. (7-15.17) yield

nmy
Pa? Py b AR X (1) COSTT
T = = =55
=g l+v|a® 3a® n%a®,5 n? Coshﬁ’;_“ (7-15.18)
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Elementary theory of beams yields the result (for x = 0) 7., = Pa?/2I. Hence, the
quantity in braces in Eq. (7-15.18) represents a correction factor K to elementary
beam theory; that is, the result of elementary beam theory must be multiplied by the
factor

2 2 COSnny
B2 42 o (—1) COS
L P s D b (7-15.19)

2 2 2,2 2 nra
I+v|a* 3a° wma’,5} n* osh .

If v=0, the correction factor is 1. Also, if b « a the correction factor is
approximately 1. That is, elementary theory is approximately correct (at x = 0) for
beams of narrow cross section (Fig. 7-15.1, with b <« a). The fact that the correction
factor approaches 1 as b/a approaches zero is apparent from Eq. (7-15.19), as
cos (nmy/b) is never larger than 1 and cosh (nna/b) becomes very large as b/a — 0.

It may also be shown that K — 1 as b/a becomes very large. For example,
consider the point x = y = 0. Then, Eq. (7-15.19) yields

2 2
Ke1__ [b 4b (- 1) ft%]

1 +v|3a2 n2a?,= Z

Note that as b/a — oo, sech (nma/b) — 1. To evaluate the series Y oo (—1)"/n?,
we first observe that by Fourier series we may express 6* in series form as

T3 n2 c 22 c 32 c # C
where C is a constant. Letting 6 = 0 and C = 3, we obtain

oL 1 1_1+1 L,
12 om\ 2273 #
or

n

72 1 1 1

oo
o= Tt et 2

Accordingly, for b/a — 00, 1,, — Pa®/2I at x =y = 0. That is, the elementary
theory of beam also gives the correct result for a very wide beam (Fig. 7-15.1 for
b > a).

Problem Set 7-15

1. Let b/a = 6 and v = 0.3. For the horizontal line x = 0, evaluate the correction factor X
[Eq. (7-15.19)] for y/b = 0, 0.2, 0.4, 0.6, 0.8, and 1.0.
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Review Problems

R-1.

R-3.

R-4.°

Let the resultant vector of the forces acting on the end z = L of a bar be directed along
the z axis. Let the resultant moment be zero. Consider the simplest stress distribution
that is statically equivalent to the resultant vector and the resultant moment. Hence, by
the semi-inverse method solve the problem of the cylindrical bar subjected to a
longitudinal end force.

Let the forces that act on the end of a rod at z = L be statically equivalent to a couple of
moment M, = M, where M, denotes the moment relative to the y axis in the end plane
at z = L. Compute a statically equivalent system for the end plane z = 0. Assume the
simplest stress distribution that is statically equivalent to M,. Hence, solve the problem
of bending of a bar subjected to end couple M. Express the stress components, the
strain components, and the displacement components in terms of M and material and
geometrical properties of the bar.

Figure R7-3 represents the cross section of a cantilever beam subjected to transverse
end load P directed along the x axis. Derive a formula for f(y) to make ¥ vanish on the
lateral boundary [see Eq. (7-11.22)]. Discuss the application of the method demon-
strated in Sections 7-14 and 7-15 for this problem.

In Section 7-7 it was assumed that the angle of twist § = fz was the same for both axes
z and z,. Then it was shown that the stresses, hence the moment M with respect to axis

Parabola
~ ‘]; ka, k>0
-1
a
b b y
x Parabola
Figure R7.3

°This problem was suggested by Professor James G. Goree, Clemson University, Clemson, South
Carolina.
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z), are identical to the stresses and the moment with respect to axis z. Alternatively, we
may assume that the twisting moment M for axis z is the same as for axis z,. Then it
may be shown by the equations of elasticity that the twist 8, relative to axis z; is equal
to the twist 6 relative to axis z. Verify this statement.

APPENDIX 7A ANALYSIS OF TAPERED BEAMS

Chapter 7 is devoted to prismatic beams. However, for certain structural applica-
tions, tapered beams, which have variable moments of inertia to counteract different
acting moments, are more efficient than prismatic beams.

As a result of their structural efficiency and suitability for fabrication, web-
tapered beams (Fig. 7A-1) are becoming popular in various types of construction.
The flexural and torsional behavior of tapered beams has been studied extensively by
Lee and his associates (1967, 1972) as well as by Davis et al. (1973). The stability
aspects have also been investigated by Kitipornchai and Trahair (1972). As for the
shear stresses, Chong et al. (1976) have showed, using principles of mechanics, that
the sloping flanges possess vertical components of forces that can either increase or
decrease the web shear, depending on the direction of taper and the direction of
acting shear.

Figure 7A-1 Stresses in tapered beam.
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Assumptions of small deflection theory were used. Referring to the stress block in
Fig. 7A-1 and summing up forces in the horizontal direction, Chong et al. (1976)
found

—Tytdx= aa—};‘dx (7A-1)
But
C
F, = J o, dA (7A-2)
b4
and
M
g, =2 (7A-3)
IX
and therefore
M C
F,. = —"J ydA (7A-4)
IX N
Let
0, = [ yas (74-5)
N
Then
M
M0 oxt
Substituting Eq. (7A-6) into Eq. (7A-1), Chong et al. (1976) found
14 MxQxy
=——-— TA-T
F t 8x< I, ) 7A-7)
Expansion of Eq. (7A-7) yields
1 Vx X; Mx 0 Mc X al,
oy = — (1L M0y MOy 0L) (7A-8)
t\ I I ox I ox
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in which ¢ = thickness of web; F, = internal force in the x direction; ¢, = normal
stress in the x direction: M, = moment at x: V, = shear at x; [, = moment of inertia
at x; d4 = differential cross-sectional area; and T, = shear stress at x.

The first term of Eq. (7A-8) corresponds to the shear stress in beams of constant
cross section. The additional terms account for the taper. Equation (7A-7) can be
applied to the classical wedge cantilever (Shepherd, 1935), as shown in Fig. 7A-2.
The classical solution is

3
. _[f [(%) sin* o] (7A-9)

For small tapers

3
[(?) sin® 9] S (7A-10)

For a = 10°, the maximum error amounts to 3% if the bracketed term is set equal
to unity. Thus, for regular small tapers

S 4 (TA-11)

Figure 7A-2 Wedge cantilever loaded at tip
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Using Eq. (7A-7), Chong and co-workers obtained
M, = Px (7A-12)

2
Oy = % [(g) —yz:lt; Qy = g(xz tan® o — 1?) (7A-13)

in which b = uniform thickness of the wedge. Substitution of Egs. (7A-12) and
(7A-13) into Eq. (7A-7) yields 7,, = —Py?/I, which is identical to Eq. (7A-11).
For shear stresses in tapered beams loaded away from the tip (Fig. 7A-3)

bh3
= 7A-14
L=13 ( )
b (W
Q= 3 (Z _yz) (7A-15)

Substitution of Eqs. (7A-14) and (7A-15) into (7A-7) gives

3M.dh 6 (K d (M
vt sla ) w () (74-16)

The shear distribution of web-tapered beams was investigated using a theory that
assumes a radial flexural stress pattern. Finite element analysis and the classical
wedge theory were used to check the accuracy of the theory. These independent
methods agreed well with each other. (Chong et al., 1976). The presented theory is
applicable to wide-flange or box-tapered Hookean beams. Conventionally, the shear-

y 3
h 0 - i r '
) /
a 1 . . ;
P

Figure 7A-3 Tapered cantilever beam.



576 PRISMATIC BAR SUBJECTED TO END LOAD

stress distribution is assumed to be uniform with the external shear carried solely by
the web. By the proposed theory, significant shears are carried by the flanges, which
can be deducted or added to the total web shear.

On the basis of the proposed theory, a simplified analysis procedure was
described. We may simply calculate the vertical components of the flange flexural
load and subtract or add them from the total vertical shear. The resulting shear was
assumed to be carried by the web as a relatively uniform stress distribution (Chong et
al., 1976).
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