بحث ششم

tحلیل پلاستیکی سازه‌های تحت بار ضریب یا

(33)

\[
\sigma = \frac{Y + \rho \sigma_0 v_n}{(1 + \frac{m}{M}) \frac{C_1}{L}}
\]

به شرح که \(Y\) باشد. رابطه (33-5) تا زمانی صادق است که \(Y\) کم شده با \(Y\) برای گردید. این حالت مولفی اتفاق می‌افتد که موج پلاستیکی به اندام طول \(x\) در میله پیشروی کند. به عبارات دیگر,

\[
\sigma_{pl} = x = \frac{M_{pl} v_n}{A_y Y}
\]

 واضح است که مگر کم‌ترین طول میله با خواهد بود. اگر تغییر شکل پلاستیکی ضمن علم عبور اول موج پلاستیکی در میله متوافقت شود، موج تتیش پلاستیکی از نگاه گاه صلب به صورت نشانی مبتنی بر لایه‌های چپ‌هاده شد. پس از انعکاس این موج، تتیش شیب‌شده، تسمتی از میله که این موج از آن برگردد، متقاطع خواهد شد.

2-6-7 مقدماتی خمش پلاستیکی

پی تمرکز با مقطع چهارگوش، \(b \times h\) شکل (11-6) و قدرت در محصولات استیک. \(R\) تحت سطح خالص \(C\) ترکل \(M\) جریان، به صورت تا \(Z\) به شکلی \(R\) می‌باشد، \(y\) زاویه داشته که معنای نه که جهت عرضی از \(Z\) افتاده، \(\theta\) تابعی \(R\) \(M_{pl}\) همگی بود. با فرض اینکه جنس پلاستیکی کامل پلاستیک است، برای این \(y\) \(M_{pl}\) توزیع‌تنش به صورت خطی بوده، از رابطه \(\sigma = M_{pl}/I\) برای محاسبه استفاده می‌شود. و کن

\[
\sigma = \frac{Y + \rho \sigma_0 v_n}{(1 + \frac{m}{M}) \frac{C_1}{L}}
\]

به شرح که \(Y\) باشد. رابطه (33-5) تا زمانی صادق است که \(Y\) کم شده با \(Y\) برای گردید. این حالت مولفی اتفاق می‌افتد که موج پلاستیکی به اندام طول \(x\) در میله پیشروی کند. به عبارات دیگر,

\[
\sigma_{pl} = x = \frac{M_{pl} v_n}{A_y Y}
\]

 واضح است که مگر کم‌ترین طول میله با خواهد بود. اگر تغییر شکل پلاستیکی ضمن علم عبور اول موج پلاستیکی در میله متوافقت شود، موج تتیش پلاستیکی از نگاه گاه صلب به صورت نشانی مبتنی بر لایه‌های چپ‌هاده شد. پس از انعکاس این موج، تتیش شیب‌شده، تسمتی از میله که این موج از آن برگردد، متقاطع خواهد شد.

2-6-7 مقدماتی خمش پلاستیکی

پی تمرکز با مقطع چهارگوش، \(b \times h\) شکل (11-6) و قدرت در محصولات استیک. \(R\) تحت سطح خالص \(C\) ترکل \(M\) جریان، به صورت تا \(Z\) به شکلی \(R\) می‌باشد، \(y\) زاویه داشته که معنای نه که جهت عرضی از \(Z\) افتاده، \(\theta\) تابعی \(R\) \(M_{pl}\) همگی بود. با فرض اینکه جنس پلاستیکی کامل پلاستیک است، برای این \(y\) \(M_{pl}\) توزیع‌تنش به صورت خطی بوده، از رابطه \(\sigma = M_{pl}/I\) برای محاسبه استفاده می‌شود. و کن
مقدار هسته

\[M_{p} = \frac{bh^{2}Y}{4} \] می‌شود.

در حالت دوم (3/3)، اگر بار M_p بر روی پلاستیکی سبک پایه‌ای قرار گیرد، به نظر می‌رسد که پلاستیکی در نظر گرفته می‌شود.

\[M_{p} = \frac{bh^{2}Y}{4} \] نسبت ضریب شکل مقطع نامیده شده که این ضریب برابر مقطع مستطیل باید با

\[\frac{M_{p}}{h} = \frac{bh^{2}Y}{4} \] باشد. اگر مقطع بالقوه شکل مقطع برابر با 1.5

\[h \] باشد. برابر مقطع دیگری، ضریب شکل مقطع برابر با 0.65

\[2 \times \frac{h}{2} = \frac{bh^{2}Y}{4} \] باشد. ضریب محور برابر با شیب برابر با 1.5

\[\frac{h}{2} \] باشد. اگر هسته در مقطع شکل مقطع برابر با 1/3

\[\frac{bh^{2}Y}{4} \] باشد، ضریب برابر با 1/2

\[\frac{bh^{2}Y}{4} \] باشد. اگر هسته در مقطع شکل مقطع برابر با 1/3

\[\frac{bh^{2}Y}{4} \] باشد، ضریب برابر با 1/2

\[\frac{bh^{2}Y}{4} \] باشد. اگر هسته در مقطع شکل مقطع برابر با 1/3

\[\frac{bh^{2}Y}{4} \] باشد، ضریب برابر با 1/2
پیت تیر که روی تکه‌گاه ساده و جوید دارد، [شکل (4-6)] (4-6) فرض می‌شود. در انتهای ازاین تیر، نوید از لایه‌ای تشکیل شده که در محیط مخلوط عناصر در این محل می‌تواند ایجاد گردد. مگر اینکه در این مکان مخلوط نبوده و این محل می‌تواند ایجاد گردد، شکل (4-6) خواهد شد.

پیت تیر که روی تکه‌گاه ساده و جوید دارد، [شکل (4-6)] (4-6) فرض می‌شود. در انتهای ازاین تیر، نوید از لایه‌ای تشکیل شده که در محیط مخلوط عناصر در این محل می‌تواند ایجاد گردد. مگر اینکه در این مکان مخلوط نبوده و این محل می‌تواند ایجاد گردد، شکل (4-6) خواهد شد.

\[p = \frac{M_p}{L} \]

شکل (1) (4-6)

\[\Delta = \frac{L}{2} \]

شکل (2) (4-6)

\[P = 2M_p L \]

شکل (3) (4-6)

\[p = \frac{4M_p L}{L} \]

شکل (4) (4-6)

\[P = \frac{M_p}{L} \]

شکل (5) (4-6)

\[\Delta = \frac{L}{2} \]

شکل (6) (4-6)

\[P = \frac{M_p}{L} \]

شکل (7) (4-6)

\[P = \frac{M_p}{L} \]

شکل (8) (4-6)

\[P = \frac{M_p}{L} \]

شکل (9) (4-6)
\[\Delta = \frac{bL^2 \rho u^2}{6MP} \]

\[\Delta = \frac{Mu^2 L}{2MP} \]

\[P = \frac{4M_P}{R} \]

\[2PR\Omega = 8 M_P \Omega \]

\[\text{شکل} (9-5) \]

\[\text{شکل} (9-6) \]

\[\frac{1}{2} M u^2 = \frac{M_P \Delta}{L} \]

\[\Delta = \frac{M u^2 L}{2MP} \]

\[1/2 \omega u^2 = \frac{M_P \Delta}{L} \]

\[\omega = u \frac{L}{u} \]

\[\text{شکل} \]
با شاد
برای برادر سیار دقت تحمل ارائه شده در این نوع از اینجایی که مشابه توجه به فضایان زیر ضروری به
نظر می‌رسد.

(2) تقریباً هنگامی که بیانیه‌ها محدود به هنگامی که ارائه‌های برخی و هنگامی ضروری
می‌گردد.

(3) جنس و صورت کل پلاستیک فرض شده اثر کارکردی این است که جندف.

(4) اثرات موضعی و به واریز دیگر از تغییر شکل‌های اولیه در منطقه‌ای پلاستیکی
صرف‌نظر می‌گردد.

(5) تغییرات تغییر با فرض که شکل اولیه نیز نیز ضرر تاثیر است انجام می‌شود.

(6) اثر در بخش آن‌ها آن‌ها در محاسبات وارد می‌شود.

(7) گزاره تخریب و آزمایش‌ها در این زمینه کم است و در مواردی هم گزاره تخریب در
دسترس نیستند. تغییرات گزاره بین تغییرات و تغییرات تخریب وجود ندارد.

(8) شکل (2)

یک لوله متغیر از این قسمت تحمل کلینیک پلاستیک تحت بارگذاری سریع، با
استفاده از پنداش لولای پلاستیکی متحرک ارائه می‌گردد. در این حالت باید تحت بار ضربه‌ای
بزرگ و ناگهانی قرار گیرند. این مسئله آن، تغییر اصلی را در تغییر شکل و هنگامی ضروری
کمی، لولای پلاستیکی در مقاطعی از شکل داده‌کننده صفحه سنگین تغییر
کلمه، پلاستیکی آن مقاطع گردد. به علت طول و هنگامی زیر شکل می‌باشد. معمولاً لوله تغییر ناگهانی در این
لوله می‌دهد که در اثر تغییر سرعت زاویه‌ای صفحه‌های تغییر محل لوله تغییر
می‌کند. به علت طول و هنگامی زیر شکل می‌باشد. معمولاً لوله تغییر
کلمه، پلاستیکی آن به هنگام تغییرات اساسی پذیرانه است. به همراه برای هر شکل ممکن، کار
پلاستیکی انجام شده در لولای با لولاهای متحرک، بدین برابر انرژی جنبه اولیه داده شده به تیر

\[p = 2 \text{ ml/l} \]

در نتیجه:

\[\text{یکی از}

در این جایی که توجه به اینکه نیروی P در پلاستیک تحت بار وارد می‌آید، تغییر جنبه‌ای
خارجی به تیر وارد نمی‌شود.
با توجه به پرپژی فویت نیروی برخی در مقطع به فاصله λ رابطه (a) صفر می‌شود. با توجه به پرپژی فویت مانش خمشی در این محل مانش خمشی ماکزیمم می‌شود و انتظار می‌رود که لوله نیلاتکسیک در این محل تنشکل شود. با فرض x فرضیه رابطه (b) را می‌توان به صورت زیر نوشت:

$$\frac{M_p}{PL} = \frac{3}{12} \frac{z - 1}{z}$$

از طرفی مانش خمشی در مقطع λ برابر می‌شود با:

$$M = \int \limits_\lambda^L m t (L - x) \, dx$$

$$= \int \limits_\lambda^L \left[\frac{3 (PL - 4 M_p)}{mL^3} \frac{L}{2} + \frac{P}{2mL} \cdot \frac{3 (PL - 4 M_p)}{mL^3} \cdot x \right] \, dx$$

$$f = f_1 \cdot (x - 1.5/2) \, (x - L/2)$$

$$F = \int \limits_\lambda^L m t \, dx$$

$$= \int \limits_\lambda^L m \left[\frac{P}{2mL} + \frac{3 (PL - 4 M_p)}{mL^3} \frac{L}{2} \cdot (x - \lambda) \cdot \frac{3 (PL - 4 M_p)}{mL^3} \left(\frac{L^2 - \lambda^2}{2} \right) \right] \, dx$$

از این رابطه وکنی نیروی F برابر صفر می‌شود که رابطه زیر برقرار باشد:

$$\frac{L + \lambda}{2} \cdot \frac{3 (PL - 4 M_p)}{mL^3} = \frac{P}{2mL} + \frac{3 (PL - 4 M_p)}{mL^3} \cdot \frac{L}{2}$$

در نتیجه، λ فاصله مقطعی نیروی برخی صفر است که برابر می‌شود با:

$$\lambda = \frac{PL}{MP} \cdot \frac{L}{3 \left(\frac{PL}{M_p} - 4 \right)}$$

نمودار نیروی برخی برای دو حالت مورد بحث در شکل‌های (f) و (g) در رسم (h) و (i) و (f) رسم گردیده است. در ضمن نمودار مانش خمشی نیز برای این دو حالت مطابق شکل‌های (c) و (d) و
جایی یک کنواخت به صورت یک چسب صلب ادامه خواهد یافت.

(ii) محل لولای پلاستیکی به هم نگه داشته برخورد یک فشار به اندازه یک تیر کنسول

یک فشار بر کنواخت به اندازه‌ها با سطح A جفتی با سرعت v به اندازه یک تیر
کنواخت به طول l، پخش می‌شود اکنون $\sqrt{v} = \theta$ رابطه حکمت

$F + R = m \times \frac{(\theta)}{2}$

که در آن θ اندازه تیر، m جرم واحد طول تیر، F نیروی برای در مقطعی با فاصله X

اریزی به دست آمده و نیروی برای در تیر v که می‌باشد. فرض می‌شود که $\theta = \frac{\theta}{2}$ است که در آن u سرعت اندازه تیر است. با این توجه داشته که برای لحاظ به برخورد نیروی وارد به تیر توسط فشار بر این

$Fv = \frac{M_1}{PL} \times \frac{1}{\theta}$

با استفاده از رابطه (i) این رابطه به صورت زیر در می‌آید:

$(1 - \lambda)^3 = \frac{12 \frac{M_1}{PL} L}{\lambda}$

این عبارت یک سیستم به صورت تنها درجه دوم زیر در خواهد آمد:

$(1 - \lambda)^3 - \frac{12 \frac{M_1}{PL} L}{\lambda} - 6 \theta^2 = 0$ (1)

که نقطه دارای یک ریشه هستی از $\lambda = 0.404$ می‌باشد. بنابراین دو لولای پلاستیکی دیگر در

دو انتهای این لوله تحقیق می‌گردند. این در نتیجه خواهد شد:

$\frac{PL}{M_1} = 22.8$ (3)

نوزع نیروی بررسی می‌شود در مثال خاصی برای اندازه تیر $\theta = \frac{\theta}{2}$ است. حالات برای برای $\frac{PL}{M_1} > 22.8$ طولی شکل به

دارای چهار بازوی صلب و سه لولای پلاستیکی می‌باشد.

اگر دریافت از $\frac{PL}{M_1} > 22.8$ باشد، دو لولای پلاستیکی تحقیق شده در 0.404 به طرف مکان تیز

جاده حاصل خواهد بود با این در نظر گرفته که نیروی برای تبادل مختلف این مکان به

$\frac{M_1}{PL} = 22.8$ (4)

از مقدار ما زیست خود (که به‌یاد از 22/8) است) به صورت، نظارت لوله‌های

پلاستیکی تغییر می‌کند. در تغییرات که در تابیتی به دارای سرعت زاویای مساوی می‌شوند،

اینها دو لولای کاری حذف شده و حاوی دو تیر همیشه دارای وسایل می‌باشند. به ترتیب

سرعت زاویایی به سطحی تقلیل می‌بابند، خصوصاً نقطه توقف می‌شود. پس از آن حرکت جابه‌
تصمیم صلب به جرم M و با سرعت اولیه $\frac{2E}{X}$ به انتهای آزاد تیر برخورد می‌کند. مقدار می‌گیرد.

(شکل ۲۵ - ۵۵) طول تیر ۱، جرم واحد طول آن m و میان خم خشک کامپلاستیکی مقعطف تیر M_p می‌باشد. انرژی جنبشی جسم برخورد کننده فقط توسط خم پلاستیکی می‌تواند مستهلك شود. و به عبارات دیگر، در تیر باعث ولای پلاستیکی ایجاد شود در لحظه برخورد جسم به انتهای تیر، یک ولای پلاستیکی در طول l تشکیل شده که این ولای به طرف انتهای گذراد تی ر حکم می‌گیرد.

اگر ولای در محیط دورعبت از l تشکیل شود، قسمتی از تیر با بطری دارای جریان می‌گردد.

این عمل میان خم خشکی جسمی زیادی لازم خواهد بود.

(شکل ۲۵ - ۵۵)

با قرار دادن X از رابطه (۶۴ - ۶) در رابطه (۵۰) شاتاب انتهای تیر به دست می‌آید.

اگر یک گول سبزی به جرم M و طول h سرعت v به انتهای یک تیر کنسول برخورد کند و پس از برخورد محور شود، برای تحلیل برخورد می‌توان گول‌سربی را مثابه نشانه در نظر گرفت.

در این صورت $X = \frac{3b}{2} M_p h^2 M$, می‌باشد $M = \frac{\rho b h}{4}

(شکل ۲۵ - ۵۵)

(۶۴ - ۶)

(۵۰)
برای تعمیم جرخشی قسمت BC با سرعت گردن حول عکس تیجه خواهد شد:

\[M_p + \int_0^x (m \alpha) \frac{d^2 x}{dt^2} \lambda = 0 \]

\[\text{که در آن} \lambda, \text{سرعت مطلقی از تیر به فاصله} \lambda \text{از این انتهای تیر برای} \lambda \text{با} \lambda \text{x} \text{خواهد شد.} \]

\[f = \frac{x^2 - \lambda}{x} \cdot \frac{\lambda}{x} \cdot x^2 \]

\[\text{که در آن} \lambda \text{نکات دهده مشتق نسبت به زمان} \text{می‌باشد.} \]

\[M_p = \int_0^x m \cdot \alpha \cdot \frac{d x}{dt} \left(\frac{x^2 \lambda}{x} \right) \lambda \]

\[= \int_0^x m \left[\frac{x^2 \lambda}{x} + \frac{\lambda x^2}{x} \right] \lambda \cdot d \lambda \]

\[= m \left[\frac{x^3 \lambda}{3} + \frac{\lambda x^2}{x} + \frac{\lambda x^2}{x} \right] \lambda \]

\[\text{در تیجه:} \]

\[M_p = m \left[\frac{x^3 \lambda}{6} + \frac{\lambda x^2}{3} \right] \]

\[\text{برای رابطه (p) \text{یا توجه به شرايطمرزي تير بايد حلك شود. رابطه (p) را ميتوان به صورت:} \]

\[Mz (1 + \frac{mx}{2M}) + \frac{m x}{2} = 0 \]

\[\text{از این رابطه به صورت زير در مي‌آيد:} \]

\[\frac{d^2 x}{dt^2} (1 + \frac{mx}{2M}) + \frac{m x}{2M} \frac{dx}{dt} = 0 \]
تالیب امتیاز برای شرط اولیه $x = x_0$ برای صفر می‌گردد. در نتیجه

$$t = \frac{mx^2_0}{6M_M}$$

(36)

اگر مقدار x از رابطه $(35 - x)$ در این رابطه قرار داده شود، نتیجه خواهد بود:

$$t = \frac{mx^2_0}{6M_M} \cdot \frac{x^2}{1 + \frac{m}{2M} x}$$

(37)

با توجه به $x = x_0$ در این رابطه زمان T برای رسیدن لوله به انتهای گیردار برای M ذکر گردید:

$$T = \frac{1}{2} \frac{mL}{M} \cdot \frac{1}{1 + \frac{m}{2M} x}$$

(38)

سرعت پیش‌روی نولای پلاستیکی از گونه‌ای با استفاده از رابطه $(37 - 36 - x)$ برای خواهد بود با:

$$\frac{dz}{dx} = \frac{x}{1 + \frac{m}{2M} \cdot \beta} \left(\frac{\frac{x}{L} \cdot \beta}{1 + \frac{m}{2M} \cdot \beta} \right)$$

(39)

که در آن $\beta = mL / mL$ می‌باشد.

از این رابطه مشتاق می‌شود به شکل زیر:

$$\int_{0}^{t} \frac{dv}{v} = \int_{0}^{x} \frac{\beta}{1 + \frac{m}{2M} \cdot \beta} \, dx$$

در نتیجه:

$$\frac{v}{v_o} = \int_{0}^{x} \frac{\beta}{1 + \frac{m}{2M} \cdot \beta} \, dx$$

(35 - x)

با

$$\frac{v}{v_o} = \frac{1}{1 + \frac{m}{2M} \cdot \beta}$$

(35 b)

از این رابطه شناخت انتهای گیردار برای خواهد گردید با:

$$z = \frac{v_o x}{1 + \frac{m}{2M} \cdot \beta}$$

(40)

تشکیل یافته در آن رابطه تا زمان T برای M در انتهای $x = x_0$ به‌پایان می‌آید.

وکت لولای پلاستیکی به انتهای گیردار برای M رسید، لکت سرعت برای M خواهد گردید با:

$$v_R = \frac{v_o}{1 + \frac{mL}{2M}}$$

(45)

حالی از رابطه (36) استفاده می‌شود. می‌بدین منظره این رابطه به صورت زیر می‌باشد:

$$\frac{m}{6} (x^2 + 2x \cdot \dot{x}) = M_P$$

$$\frac{m}{6} \frac{d}{dt} (x^2 + \dot{x}) = M_P$$

(46)

با انگزش گرفتن از این رابطه نتیجه خواهد گردید:

$$x^2 \cdot \dot{x} = \frac{6M_P}{m} t + c_1$$

(47)
مقاله ضربه

برای بروز منحنی تغییر شکل تیپ، وقتی که لولای پلاستیکی به اندازه گیر، درد با استفاده
از شکل (25 - 3) می‌توان نتیجه گرفت:

\[y = \frac{\beta}{\alpha} - 1 \]

که با استفاده از رابطه (b 25 - 3) نتیجه می‌شود:

\[y = \int \frac{x - \beta}{x} \frac{v}{1 + \frac{m}{2M} x} \text{dt} \]

اگر بی جای باشد مقدار آن از رابطه (i) آرزآ داده شود، زیرا برای خواهد شد:

\[y = \int \frac{L}{x} \frac{\beta}{x} \frac{v}{1 + \frac{m}{2M} x} \left[\frac{2x}{6M_\beta} \left(\frac{m}{2M} x \right) \right] \text{dt} \]

حکم انتگرال از زمان رساندن لولای به مقیاس \(\beta \) انتهای گیر، که از شکل (8) با فرض \(\lambda = \frac{L}{x} \) و در ضریب اندکی با آرزآ داده شد، با استفاده از معادله (ii)

\[y = \frac{6 M_\beta}{m v} \frac{\beta^2}{L^2} \left[\frac{1 + \beta}{1 + \beta \frac{L}{x}} \right] \text{dt} \]

با استفاده از معادله (ii) به صورت زیر در می‌آید:

\[y = \frac{6 M_\beta}{m v} \frac{\beta^2}{L^2} \left[\frac{1 + \beta}{1 + \beta \frac{L}{x}} \text{dt} \right] \]

 vakate سایرها دارای قرارداد می‌دارد، با استفاده
از شکل (25 - 3) می‌توان نتیجه گرفت:

\[y = \frac{\beta}{\alpha} - 1 \]

که با استفاده از رابطه (b 25 - 3) نتیجه می‌شود:

\[y = \int \frac{x - \beta}{x} \frac{v}{1 + \frac{m}{2M} x} \text{dt} \]

اگر بی جای باشد مقدار آن از رابطه (i) آرزآ داده شود، زیرا برای خواهد شد:

\[y = \int \frac{L}{x} \frac{\beta}{x} \frac{v}{1 + \frac{m}{2M} x} \left[\frac{2x}{6M_\beta} \left(\frac{m}{2M} x \right) \right] \text{dt} \]

حکم انتگرال از زمان رساندن لولای به مقیاس \(\beta \) انتهای گیر، که از شکل (8) با فرض \(\lambda = \frac{L}{x} \) و در ضریب اندکی با آرزآ داده شد، با استفاده از معادله (ii)

\[y = \frac{6 M_\beta}{m v} \frac{\beta^2}{L^2} \left[\frac{1 + \beta}{1 + \beta \frac{L}{x}} \text{dt} \right] \]

با استفاده از معادله (ii) به صورت زیر در می‌آید:

\[y = \frac{6 M_\beta}{m v} \frac{\beta^2}{L^2} \left[\frac{1 + \beta}{1 + \beta \frac{L}{x}} \text{dt} \right] \]
در حالت جسم ضریب زن و جرم نیست و جرم نیست، باید بر طرف است و به عبارت دیگر

\[
\beta \to 0
\]

در این حالت از رابطه (۴۴) (۴) نتیجه می‌شود:

\[
y_i = \frac{(M_v \beta_s^2)}{3 M_p} \left[\beta - \beta_s \right] = \frac{(M_v \beta_s^2)}{3 M_p} \left[\beta - \beta_s \right] + 2 L \left(1 + \beta \right) \left(1 - \beta_s \right)
\]

\[
\frac{(y_i / L) M_p}{1/2 M_v \beta_s^2} = 1 - \beta
\]

\[
\beta \to \infty
\]

\[
y_i = \frac{(M_v \beta_s^2)}{3 M_p} \left[\beta - \beta_s \right] + 2 L \left(1 + \beta \right) \left(1 - \beta_s \right)
\]

\[
\frac{(y_i / L) M_p}{1/2 M_v \beta_s^2} = 1 - \beta
\]

\[
\beta \to \infty
\]

\[
y_i = \frac{(M_v \beta_s^2)}{3 M_p} \left[\beta - \beta_s \right] + 2 L \left(1 + \beta \right) \left(1 - \beta_s \right)
\]

\[
\frac{(y_i / L) M_p}{1/2 M_v \beta_s^2} = 1 - \beta
\]

\[
\beta \to \infty
\]

\[
y_i = \frac{(M_v \beta_s^2)}{3 M_p} \left[\beta - \beta_s \right] + 2 L \left(1 + \beta \right) \left(1 - \beta_s \right)
\]

\[
\frac{(y_i / L) M_p}{1/2 M_v \beta_s^2} = 1 - \beta
\]

\[
\beta \to \infty
\]

\[
y_i = \frac{(M_v \beta_s^2)}{3 M_p} \left[\beta - \beta_s \right] + 2 L \left(1 + \beta \right) \left(1 - \beta_s \right)
\]

\[
\frac{(y_i / L) M_p}{1/2 M_v \beta_s^2} = 1 - \beta
\]

\[
\beta \to \infty
\]

\[
y_i = \frac{(M_v \beta_s^2)}{3 M_p} \left[\beta - \beta_s \right] + 2 L \left(1 + \beta \right) \left(1 - \beta_s \right)
\]

\[
\frac{(y_i / L) M_p}{1/2 M_v \beta_s^2} = 1 - \beta
\]

\[
\beta \to \infty
\]

\[
y_i = \frac{(M_v \beta_s^2)}{3 M_p} \left[\beta - \beta_s \right] + 2 L \left(1 + \beta \right) \left(1 - \beta_s \right)
\]

\[
\frac{(y_i / L) M_p}{1/2 M_v \beta_s^2} = 1 - \beta
\]

\[
\beta \to \infty
\]

\[
y_i = \frac{(M_v \beta_s^2)}{3 M_p} \left[\beta - \beta_s \right] + 2 L \left(1 + \beta \right) \left(1 - \beta_s \right)
\]

\[
\frac{(y_i / L) M_p}{1/2 M_v \beta_s^2} = 1 - \beta
\]

\[
\beta \to \infty
\]

\[
y_i = \frac{(M_v \beta_s^2)}{3 M_p} \left[\beta - \beta_s \right] + 2 L \left(1 + \beta \right) \left(1 - \beta_s \right)
\]

\[
\frac{(y_i / L) M_p}{1/2 M_v \beta_s^2} = 1 - \beta
\]

\[
\beta \to \infty
\]

\[
y_i = \frac{(M_v \beta_s^2)}{3 M_p} \left[\beta - \beta_s \right] + 2 L \left(1 + \beta \right) \left(1 - \beta_s \right)
\]

\[
\frac{(y_i / L) M_p}{1/2 M_v \beta_s^2} = 1 - \beta
\]

\[
\beta \to \infty
\]

\[
y_i = \frac{(M_v \beta_s^2)}{3 M_p} \left[\beta - \beta_s \right] + 2 L \left(1 + \beta \right) \left(1 - \beta_s \right)
\]

\[
\frac{(y_i / L) M_p}{1/2 M_v \beta_s^2} = 1 - \beta
\]

\[
\beta \to \infty
\]

\[
y_i = \frac{(M_v \beta_s^2)}{3 M_p} \left[\beta - \beta_s \right] + 2 L \left(1 + \beta \right) \left(1 - \beta_s \right)
\]

\[
\frac{(y_i / L) M_p}{1/2 M_v \beta_s^2} = 1 - \beta
\]

\[
\beta \to \infty
\]

\[
y_i = \frac{(M_v \beta_s^2)}{3 M_p} \left[\beta - \beta_s \right] + 2 L \left(1 + \beta \right) \left(1 - \beta_s \right)
\]

\[
\frac{(y_i / L) M_p}{1/2 M_v \beta_s^2} = 1 - \beta
\]

\[
\beta \to \infty
\]

\[
y_i = \frac{(M_v \beta_s^2)}{3 M_p} \left[\beta - \beta_s \right] + 2 L \left(1 + \beta \right) \left(1 - \beta_s \right)
\]

\[
\frac{(y_i / L) M_p}{1/2 M_v \beta_s^2} = 1 - \beta
\]

\[
\beta \to \infty
\]

\[
y_i = \frac{(M_v \beta_s^2)}{3 M_p} \left[\beta - \beta_s \right] + 2 L \left(1 + \beta \right) \left(1 - \beta_s \right)
\]

\[
\frac{(y_i / L) M_p}{1/2 M_v \beta_s^2} = 1 - \beta
\]

\[
\beta \to \infty
\]
انرژی مستحکم‌شده در لولای پلاستیکی متحرک برای پیش‌بینی با استفاده از:
\[\frac{1}{2}Mu^2 = \frac{1}{2} M \bar{z}^2 - F_R \]

\[= \frac{1}{2} M u^2 - \frac{1}{2} M \bar{z}^2 \cdot \frac{mL^2}{6} \]

\[= \frac{1}{2} M u^2 \cdot \frac{1}{6} (3M + mL) \frac{v^2}{(1+\beta)^2} 2 M \]

\[= \frac{2}{3} (\frac{3}{2} + \beta) \frac{Mv^2}{(1+\beta)^2} \]

\[\gamma_i = \frac{(Mv^2)^2}{3M \mu m} \left[1 + 2 \frac{1}{n} \frac{1}{\xi} \right] \]

\[= \frac{1}{\gamma^2} \frac{Mv^2}{M_p} \frac{L}{1} \frac{1}{\xi} \]

\[\left[\frac{y_i}{L} \right] = \frac{1}{\xi} \frac{M_p}{1/2 Mv^2} \frac{y_i}{M_p m} / \frac{(Mv^2)^2}{(y^2)} \]

(\[a \] \[\xi \] \[\xi \]

(\[b \] \[\xi \] \[\xi \]

(\[c \] \[\xi \] \[\xi \]

(\[d \] \[\xi \] \[\xi \]

(\[e \] \[\xi \] \[\xi \]

(\[f \] \[\xi \] \[\xi \]

(\[g \] \[\xi \] \[\xi \]

(\[h \] \[\xi \] \[\xi \]

(\[i \] \[\xi \] \[\xi \]

(\[j \] \[\xi \] \[\xi \]

(\[k \] \[\xi \] \[\xi \]

(\[l \] \[\xi \] \[\xi \]

(\[m \] \[\xi \] \[\xi \]

(\[n \] \[\xi \] \[\xi \]

(\[o \] \[\xi \] \[\xi \]

(\[p \] \[\xi \] \[\xi \]

(\[q \] \[\xi \] \[\xi \]

(\[r \] \[\xi \] \[\xi \]

(\[s \] \[\xi \] \[\xi \]

(\[t \] \[\xi \] \[\xi \]

(\[u \] \[\xi \] \[\xi \]

(\[v \] \[\xi \] \[\xi \]

(\[w \] \[\xi \] \[\xi \]

(\[x \] \[\xi \] \[\xi \]

(\[y \] \[\xi \] \[\xi \]

(\[z \] \[\xi \] \[\xi \]

\[\text{References:} \]

(4) رفتار پلاستیکی نیرو روی تکه‌گان ساده در اثر یک ضریب در محدوده
در قسمت قبل تحلیل پلاستیکی نیروسیس با استفاده از پنجمولولی‌های پلاستیکی ارائه
شده. در این قسمت رفتار نیرو روی تکه‌گان ساده تحت تأثیر دینامیکی جالبی با یک ضریب
نشان‌دهنده استفاده از مدل اکسپانسیون درست، مورد مطالعه قرار می‌گیرد. این مدل اکسپانسیون
که تعریف گوناگونی است، و

این روش جنبشی ضریب یک توسیع آزاد لولای پلاستیکی متحرک مستحکم می‌گردد.

\[q = \frac{y(y + 3y)}{3(z + y)^2} \] (4) - (4 b)

که در آن لایه یک ترسیم جرم نیروی یک ضریب در یک لولای پلاستیکی متحرک مستحکم می‌شود.

برای خواهد شد پا در

تعریف گوناگونی است.

\[\frac{1}{2} MB^2 \left[1 - \frac{(1 + \frac{2}{3} \beta)}{(1 + \beta)^3} \right] \] (4) - (4 a)

\[q = \frac{y(y + 3y)}{3(z + y)^2} \]

جدول (1 - 4) داده شده است.

\[\begin{array}{c|c|c|c|c|c|c|c|c|c}
\hline
r & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 8 & 12 & 18 & 198 \\
\hline
v & 0 & 0.001 & 0.018 & 0.031 & 0.041 & 0.058 & 0.078 & 0.085 & 0.090 & 0.093 & 0.099 \\
\hline
\end{array} \]

\[\text{1: Ezra, A. A. "The plastic response of a simply supported beam to an impact} \]

\[\text{load at its center" proc., Third u. s. Nat. cong. appl. Mech. Am. soc. mech. Eng.}\]

\[1538, 1958 \]
که به سویت زیر ساده می‌شود:

\begin{equation}
(M + mx) \ddot{z} + mx \dot{\theta}(L - x) + mx(z - L\dot{\theta}) = 0
\end{equation}

(۶ - ۴۸)

برایه چرخش (b)

راهابه چرخش OB تا گرفتن مسافت از OB به سویت زیر در می‌آید:

\[2M_p = \int_{0}^{x} m \ddot{z} \, f_p \, \lambda\]

(۶ - ۴۹)

با نظر دادن مقادیر \(f_p \) از رابطه (۱) (b) نتیجه می‌شود:

\[2M_p = m \int_{0}^{x} \left[\left(\frac{\lambda}{x} \right) \dot{z} + \dot{\lambda} \frac{\ddot{z} \dot{x}^2 + (L - x) \dot{\theta} + \dot{\theta} \frac{\ddot{\lambda} \dot{x}}{x} \right) \right] \, \lambda \, d\lambda\]

که پس از اشکالگری گرفتن و ساده کردن به سویت زیر در می‌آید:

\[12 \, M_p = m \left[\dot{z}^2 + 2x \dot{z} (L - x) \dot{\theta} + 2xx \left(z - 1, \dot{\theta} \right) \right]\]

(6 - ۴۸)

برای چرخش (c)

\[\text{برای چرخش (a) \text{ AB} \text{}}\]

\[\text{برای چرخش (b) \text{ OB}}\]

\[M_p = I_A \dot{\theta}\]

نتیجه خواهد شد:
با حل این رابطه، مقدار x برای موتیفیت حذ لوای پلاستیکی به دست می‌آید. برای مثال: در حالت $M/m \to 0$،

\[
\mu = \frac{3M_0}{4} \left(\frac{M_0}{m} \right) \frac{1}{2} \theta
\]

با حل این رابطه، مقدار x برای موتیفیت حذ لوای پلاستیکی به دست می‌آید. برای مثال: در حالت $M/m \to \infty$, $x = 0$. اگر رابطه 20-2 در 28 ضرب شده، از رابطه 29-3 کم شود، نتیجه می‌شود:

\[
\frac{2}{x} + \frac{2}{M_0} = \frac{2}{M_0} + \frac{1}{x} - \frac{L}{x^2}
\]

در این حالت نتیجه می‌شود:

\[
\frac{M}{m} \to 1
\]

در حالت اگر مقدار θ از رابطه (1) و مقدار $\frac{1}{m}$ از رابطه (28-8) در رابطه (29-8) قرار داده شوند، نتیجه خواهد شد:

\[
x \left(\frac{M}{m} \right) = \frac{3M_0}{m} \left[\frac{2}{x} + \frac{2}{M_0} \right] \frac{1}{2} \theta
\]

کامبودیا سریع از انتقال اولیه باد، باعث نشان می‌دهد به‌نتیجه‌های انرژی‌های بی‌پنجره.

\[
\frac{2}{x} + \frac{2}{M_0} = \frac{2}{M_0} + \frac{1}{x} - \frac{L}{x^2}
\]

در این حالت قرار داده شد (29-8) به صورت زیر در می‌آید:

\[
(M + mx) \frac{dx}{dt} + M \frac{dx}{dt} = 0
\]

\[
d(M + mx \frac{dx}{dt}) dt = 0
\]

\[
\frac{dt}{(M + mx \frac{dx}{dt})} = 0
\]
تیتر کنسول تحت بار ضریب‌های گسترده یک هواکش
برای اعمال بار ضریب‌های گسترده می‌توان از تیوری رانی رایش مغناطیس یک سیم پیچ تخلیه
سرعت خاکی استفاده کرد. با استفاده از این نوع بار، فشار تیور کنسول و مویی‌گری نهایی اولای
پلاستیکی در شکل‌های (۲۹ - ۳۰ - ۳۱ - ۳۲ - ۳۳ - ۳۴) اردو شده است. در شکل (۲۹ - ۳۰ - ۳۱ - ۳۲ - ۳۳ - ۳۴) انتهای آزاد پر
بدونه وزنه اضافی است، و حال آنها در شکل (۲۹ - ۳۰ - ۳۱ - ۳۲ - ۳۳ - ۳۴) وزنه‌ای در انتهای آزاد اضافه شده است.

\[z = \frac{M^2 v_0^2}{12 M_p m} \left[\frac{1}{2} \left(1 + \frac{m}{M} \right) \frac{m x (2M + mx)}{2(M + mx)^2} \right] \]
(۵۳ - ۳۰)

\[m \ddot{x} + 2m \dot{x} = 12 M_p \]
(۱)

\[d (m \dot{x}) / dt = 12 M_p \]
(۱)

با انگرال گرفتن از رابطه (۱) و با استفاده از شرط \(t = 0 \), \(\dot{x} = 0 \), \(x = 0 \) \(x = x_v x_0 \) \(x_v \) تلاش یافته می‌شود:

\[\dot{x} = \frac{M v_0}{M + Mx} \]
(۱)

در ضمن با انگرال گرفتن از رابطه (۱) \(\dot{x} \) تیتری خواهد شد:

\[mx^2 \dot{x} = 12 M_p t \]
(۱)

حالا با حذف \(\ddot{x} \) بین روابط (۱), (۱) مشتق گرفتن نسبت به \(t \) برای می‌شود:

\[\dot{x} = \frac{12 M_p}{M + Mx} \frac{(M + Mx)^2}{x (2M + mx)} \]
(۱)

خیز وسط بین\(\ddot{x} \) با انگرال گرفتن از رابطه (۱) \(\ddot{x} \) تیتری می‌شود:

\[d \ddot{x} = \frac{M v_0}{M + Mx} \frac{M v_0}{12 M_p m} \frac{x (2M + mx)}{(M + Mx)^2} \]
(۱)

با داشته‌م \(M + Mx = 8 \) تیتری خواهد شد:

\[z = \int_{a}^{x} \frac{M^2 v_0^2}{12 M_p m} \frac{s^2 - M^2}{s^3} ds \]
در شکل (31-4) یک تیر کنسول با وزنهای در انتهای آن، تحت بار ضریبی گسترده، و گفتار گرفته در قسمت آتیشی نشان داده شده است. در این حالت بارگذاری گسترده تحت بار سرعت گذاری و توده حداقل جریان جهت یکدیگر حرکت می‌کنند. بنابراین مشخصات ذوب وزنه‌بندی و شدت بارگذاری شکل‌های مختلف فرآیند ریزش رخ می‌دهد. یکی از این شکل‌های طبقه‌بندی شده در شکل (31-4) آورده شده است.

![Diagram](image-url)