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Preface

I wrote this book for the same reason I suspect most academics write books: because
there was no book available that did what I wanted with the subject matter. I was look-
ing for a computational approach that was not a cookbook or a collection of programs.
1 wanted to get at the way programming is done, the idea of thinking algorithmically.
This was most easily attained using the compact notation possible when kinematic links
are represented as complex numbers. Computation is the heart of this book, and it is
made compact by the introduction of the complex variable method of representing two-
dimensional vectors.

The book is suitable for a rich one-semester course in kinematics. It is designed
to be self-contained. In particular, there is a complete introduction to complex variables
in the book. All properties of complex variables necessary for planar kinematics (and
a little more) are presented in the text. No background in complex variables is neces-
sary. The student who has never seen complex variables can use this book with no other
resource necessary. The student should have calculus, preferably including some dif-
ferential equations. Chapters 10 and 11 will be easier for students who have had a first
course in engineering statics.

The first seven chapters provide a foundation for the following four. Any course
based on this book should include these. The first two chapters introduce, in a leisurely
fashion, basic kinematic concepts. Chapter 1 introduces seven familiar elementary
mechanisms that recur throughout the book. These are used to illustrate basic concepts
such as mobility and kinematic inversion. Chapter 2 introduces the bar linkage and
extends the ideas beyond four-bar linkages and the slider crank. The four-link
mechanism is in many ways a special case. Many of the analytic techniques for analysis
and synthesis do not extend automatically to more complicated linkages. The student
should be aware of this. Computer power makes more complicated mechanisms less
daunting. The step from four to six bars is the key to all further complication. There-
fore, I have introduced six-bar linkages here and discussed briefly how one would go
to eight-bar and higher linkages. (There is a later homework problem requiring the
painless synthesis of a ten-bar linkage.) In these two chapters, the idea of mathematical
abstraction is introduced.

The next two chapters provide some mathematical preliminaries. The idea of
frame of reference and a general review of vectors are given in Chapter 3. Students
well prepared in these areas can safely skim this chapter to become familiar with the
notation used in this book. Chapter 4 introduces the complex variable, its arithmetic
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properties, and its connection with the two-dimensional vector. The final section of
Chapter 4 explains how to differentiate complex variables, which is necessary for the
analysis of velocity and acceleration.

The foundations of kinematic analysis appear in Chapters 5 through 7. Chapter 5
introduces position analysis of bar linkages (including the slider-crank linkage). As in
other sections of the book, extensions to six-bar linkages are given. The fundamental
nonlinear nature of the analysis is explored, and the power of the complex-variable
representation is demonstrated. The closing section of Chapter 5 deals with indirect,
iterative methods of solution, which are used throughout the rest of the book. Modern
digital computers make iterative schemes practical; however, they are not always
taught before students encounter kinematics. Some students never see them in a setting
in which their utility is apparent. To rectify this and to keep this book self-contained,
I have introduced Newton-Raphson schemes for single equations and for systems of
equations and have explicated matrix inversion through Gaussian reduction.

Chapter 6 introduces velocity and acceleration, connecting the physical nature of
velocity and acceleration with their simple representation in terms of complex vari-
ables. Four-bar linkages are emphasized, with extension to six-bar and higher linkages,
and there is a discussion of singular mechanisms.

Chapter 7 introduces the two most important higher pairs: gears and cams. The
complex-variable approach is shown to make gear-train analysis very simple. The con-
cept of a loop-closure variable not attached to a link is introduced and then used to write
loop-closure equations for cam pairs in the second half of the chapter. Cam pairs are
analyzed using a Newton-Raphson iterative scheme, for which a pseudocode listing is
given. Examples of both single- and four-lobe cams are provided. The translating
follower pair is thoroughly explored, and the oscillating follower pair is examined
analytically.

Chapters 8 and 9 deal with synthesis. Chapters 10 and 11 deal with forces and
moments, introducing the discipline of kinetics. It is difficult in a one-semester course,
and probably impossible in a one-quarter course, to cover all the material in these
last four chapters. A course in pure kinematics, to be followed by a second course in
kinetics, should probably include Chapters 8 and 9. These present the basic concepts
of synthesis. Chapter 8 introduces direct methods made possible by the formulation in
terms of complex variables. Chapter 9 goes on to indirect methods of the sort necessary
for more complicated systems. The transition to six-bar analysis is introduced, and
quick mention is made of velocity and acceleration synthesis, as well as the concept
of optimum design, which shares techniques with kinematic synthesis.

If synthesis is not a concern, because it is covered in some design sequence, then
Chapters 8 and 9 can be omitted without loss of continuity, and the last two chapters
can be included. Chapter 10 builds on statics and lays the groundwork for Chapter 11,
which introduces such real-world phenomena as inertia and friction. The two final sec-
tions present a moderately realistic model of a one-cylinder internal combustion engine
as a vehicle for exploration of true dynamic systems, those for which the input is a
force and the output is motion. The engine is modeled by a slider crank, with which
the student will be very familiar, and a realistic model of the driving force, based on
combustion, is provided. I examine start-up from rest, equilibrium speed, variations in
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speed, and how they depend on system inertia, and the shaking of the frame induced
by low- and high-inertia systems. I give pseudocode for all these problems.

An alternative course including the elements of both synthesis and kinetics would
utilize Chapters 8 and 10, again without loss of continuity.

I close this Preface with some comments about computation. ‘‘Real’” kinematics
is done computationally. Computing is central to this book. Algorithms for solving pro-
gressively more difficult problems are given throughout the book, often building on
simpler algorithms presented earlier. I believe, however, that giving commercial pack-
ages to students in a first course in any engineering area obscures both the academic
subject and the limits of computation. Students must write their own codes. They must
understand what algorithms are and how to create them before going on to use the
major commercial codes they will see in industry. Programming skills, and the algo-
rithmic thinking that underlies these skills, are essential for anyone embarking on an
engineering career today. On the other hand, it doesn’t matter in what language a
student programs. Fortran is perhaps the best. It is widely used in engineering and
science, and it has the advantage of built-in complex variable arithmetic, but many
engineering students are first introduced to computing through Basic or Pascal, lan-
guages without built-in complex arithmetic. I have elected to present the programs in
pseudocode; however, all the programs in this text are easily programmed in Pascal.
Many of the curves presented in the text were created using Pascal programs written
following the pseudocode algorithms in the text. (Indeed, some of the pseudocode is
backformed from the appropriate Pascal program.)

I am grateful to the following gentlemen for their wisdom and kind suggestions:
Professor Michael Savage, University of Akron, Dr. Struan R. Robertson, University
of Lowell, Professor Brian Gilmore, Pennsylvania State University at University Park,
and Professor Stephen Tricarno, Stevens Institute of Technology. This book is better
because of them. Of course, they are not responsible for suggestions misunderstood
and wisdom ignored.

Roger F. Gans
Rochester, New York
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Chapter 1

Mechanisms and
Their Abstractions

One of the most important tasks for mechanical engineers is the design of machines
with moving parts. These machines transform motion from one form to another and
transmit power. The earliest machines are ancient indeed: the mill, the shadoof. the
loom, the pot chain. Two early tasks were the conversion of reciprocating motion to
rotary motion, and vice versa, and the change in direction of rotary power.

Of the former, Watt (Tann 1972) said in 1808, ‘“The true inventor of the crank
rotative motion was the man (who unfortunately has not been deified) that first con-
trived the common foot lathe.’’ Whether this is true or not, crank-driven rotary motion
was well known early in the fifteenth century (Usher 1929), and many of Leonardo da
Vinci’s sketches show crank-operated mechanisms (as do earlier sketches by Taccolo
(Prager and Scaglia 1972). (For an interesting assessment of Leonardo, see Truesdell
1955.)

Gearing was developed when water power was harnessed for the grinding of grain.
It was necessary to transform the rotation of the waterwheel’s horizontal axle to ver-
tical rotation to drive the millstones. Changes in speed also allowed more efficient
grinding. The problem was certainly solved by the Romans before the start of the
Christian Era. For an interesting collection of the state of kinematic knowledge in
Europe during the late Renaissance, see the 1588 “‘text’’ by Ramelli, which shows,
among many other things, 110 ways to raise water (Gnudi 1972).

The design process involves synthesizing mechanisms that will produce, without
failure, given motions under the application of given forces. The design process itself
is full of art, an art the design engineer keeps learning throughout his or her career.

The first task, design of a mechanism that can produce a desired motion from
a simpler motion, is the main subject of this text. (It will be necessary to study how
existing mechanisms work before new ones can be designed.) Some attention will be
paid to the second task, the transmission and transformation of forces, but the emphasis
will be on motion transformation. The study of motion, divorced from the force that
produces it, is kinematics. The study of dynamics, including the forces, can be added.
The resulting discipline, to which this text provides some introduction, is usually
called kinetics.
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Before mechanisms can be synthesized, existing mechanisms need to be analyzed.
This is the easiest way to develop a set of tools that can be used later for synthesis.
It is also a good way to become familiar with over two thousand years of kinematic
lore. The more mechanisms one sees, the better chance one has of designing a good
mechanism to do a given task. The great ancient and medieval mechanicians could
function with primitive tools. The average engineer needs better, modern tools. These
tools of the modern engineer are mathematical techniques implemented on digital com-
puters. Therefore, of necessity, this text will eventually become quite mathematical,
but we will always maintain contact with the physical world of engineering devices.

The words design and synthesis have already been used interchangeably. They are
not exact synonyms. Synthesis is the more limited and well-defined word. Design
includes synthesis. In this text, synthesis will be used fairly strictly to mean the design
of a mechanism to perform a given kinematic task. Design will be used more generally.
Synthesis is the design of a mechanism to take one sort of motion and transform it into
another. The primary motion is simple, usually a rotation, as the output of most prime
movers, motors, and engines is rotation. Occasionally, the prime motion will be recip-
rocal, as the motion of a piston (which is then converted into a rotating motion at the
crankshaft, which can serve as the prime mover for the next mechanism).

Like all design problems, mechanism synthesis does not have a single solution.
There are an infinite number of mechanisms capable of accomplishing a given task.
It is the job of the designer to find the best approximation possible to the optimum
mechanism. The meaning of optimum is not always clear and varies from job to job.
Some criteria for ‘‘goodness’” will be given in this text. Others will be discovered
throughout your career.

The study of mechanism design will begin with the quick, qualitative examination
of some specific mechanisms.

SEVEN MODERN MECHANISMS

Figure 1.1 shows the working parts of a set of compasses or dividers. The two legs
pivot at a. The joints at b and ¢ are more complicated. There is a pin normal to the
page. The leg can slip with respect to this pin. The pin also has a threaded hole in the
plane of the page through which the threaded control rod goes. Rotation of knob d
pushes pins b and c apart or pulls them together. The thread shown is right-handed on
one side and left-handed on the other. The motion transduction is from the rotation of
knob d to the change in angle between the legs of the compasses. Note that this motion
is not two-dimensional; the rotation axes of the two rotations are perpendicular.

Figure 1.2 shows a geared corkscrew, immediately after the cork has been with-
drawn. The bottle is shown in section and severely truncated. The screw itself and the
attached cork have not been shown. They are in the frame, center. There are two kine-
matic processes required to remove the cork. The first is rotation of the shaft about
the vertical, driving the corkscrew into the cork and lifting the legs by the action of
the toothed shaft on the toothed legs. The second process, withdrawal of the cork, takes
place by moving the legs down and lifting the shaft, which does not turn.
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FIGURE 1.1  Schematic of the working FIGURE 1.2 A rypical two-eared geared

mechanism of a pair of dividers or a com- corkscrew shown immediately after pulling a
pass. The knob d is rotated to change the cork. The bottle is shown sketchily, and the
spacing of the legs. cork and screw are not shown.

In operation, the side legs pivot about pins a and b. The gears mesh with the teeth
of the vertical member, attached to the actual corkscrew and cork, moving it up and
down. This is a rack-and-pinion system, in principle, exactly as advertised on the steer-
ing of sports cars. The two gears are the pinions, and the shaft is the rack.

Figure 1.3 shows another type of corkscrew, which I will call a sommelier’s cork-
screw, in its initial position and, in dashed lines, its final position. The process of with-
drawing the cork is shown by the arrow from ¢ to ¢’. The parts of the corkscrew have
been labeled 2, 3, and 4. In operation, part 2 pivots on the bottle at point a. Part 3
pivots about point b, which is also moving with part 2. There is relative rotation of
parts 3 and 4 about the pivot ¢, but part 4 moves in a straight line, constrained by the
neck of the bottle. Kinematically, the cork and the corkscrew are part of the same mem-
ber because there is no relative motion between them.

Figure 1.4 shows a device that allows the earpieces of a pair of eyeglasses to flex
outward. The view is from above. The earpiece extends horizontally to the left, and
the lenses of the glasses extend upward from point d, which is the ordinary hinge
between the earpiece and the front of the glasses. In operation, earpiece segment 1 is
fixed, and the remainder of the earpiece is pulled out (down in the figure), as indicated
by the arrow. There is a pivot point at a and a pin at b. Block c is constrained in a
channel and has a pivot, so that members 2 and 4 can slide with respect to each other
and block ¢ can also pivot. It is interesting to compare this to the second corkscrew.
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FIGURE 1.3  The sommelier’s corkscrew shown at the
start of its stroke (solid lines) and then end (dashed lines).
The cork and screw move together from point ¢ to point ¢’

FIGURE 1.4 A device that allows the earpiece of a pair of eyeglasses to be pulled out wider
than its normal rest position. The earpiece is horizontal, labeled 4; the eyeglass front is vertical,
directly above point d.

The two pivots at a are equivalent, and the block ¢ behaves like the cork. The earpiece
is like the bottle. Detailed comparison awaits the development of a language in the next
chapter.

Figure 1.5 is a scale drawing of the foot-brake linkage on a motorcycle, viewed
from the side. Element 2 is the foot pedal. It pivots about pin a, connecting it to the
frame of the motorcycle, here solid black and numbered 1. The motion of the pedal
pulls on link 3, which rotates lever 4. Lever 4 is pivoted at d and operates the brake
shoes inside the casing labeled 1. The casing is labeled 1 because it is rigidly attached
to the frame of the motorcycle and so is kinematically the same as the other frame
member labeled 1.

Figure 1.6 shows the opening mechanism for a pivoted rear automobile window.
The view is from above, and this is the mechanism on the left-hand side of the car.
The front of the car is to the left. Element 1 is part of the body of the car. Element
4 is the window, which pivots around a point well off the page to the left.
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FIGURE 1.5  Scale sketch of the foot-brake linkage for a motorcycle. The motorcycle has been
omitted for clarity. The black element 1 on the right represents the frame of the motorcycle.
The disk labeled 1 on the left represents the brake drum housing. It has the same designa-
tion as the frame because it is attached to the motorcycle and does not move with respect
to the frame.

FIGURE 1.6 A wop (plan) view of
the pivot mechanism for the rear win-
dow of an automobile. The link labeled 4
represents the window. It pivots about a
point about 800 mm to the left of point c.

The operator rotates and slides element 3. This rotates both 2 and 4. In both the
closed and open positions, elements 2 and 3 are nearly parallel in the sense that the
lines ab and bc are nearly parallel. Element 2 rotates approximately = rad. Element 3
rocks back and forth through a smaller angle, and 4 pivots smoothly through a very
small angle. (For the vehicle in question, this angle is about 0.08 rad, or 4.5°.)

Figure 1.7 shows a pair of vise-grip pliers. The fixed jaw is labeled 1 and the
movable jaw 4. The operator moves handle 3, rotating jaw 4 and element 2. In the
closed position, elements 2 and 3 are nearly parallel in the same sense as for the
window mechanism just described: Lines bc and cd are nearly parallel. The opening
of the jaw for which this occurs is controlled by the location of pivot d, which is con-
trolled by element 5, so that this mechanism is somewhat more complicated than the
window mechanism. (The spring that keeps the system from coming apart when the
pliers are open is not shown.)
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FIGURE 1.7 A pair of lock-
ing (vise-grip) pliers. The screw
5 is used to adjust the position
of the pivot d, which controls
the size of the jaw opening in its
locked position.

JOINTS AND LINKS:
LOWER PAIRS AND HIGHER PAIRS

The devices described so far are all complicated arrangements of parts, unsuitable to
direct analysis, with the differences in their appearance obscuring the commonality
they share. This formal section will demonstrate the commonality and provide lan-
guage with which kinematic devices can be discussed and analyzed.

Each device is made of solid parts connected by joints of one sort or another,
allowing relative movement. In what follows, the solid parts will be assumed to be
ideally rigid and undeformable. This is a good approximation for machines that are
working as they are meant to. Later in the text, modes of failure will be discussed
briefly; for now, the ideal is good enough. The solid parts will be called links and the
Jjoints will be called joints.

Joints allow motion. The kind of motion is best classified by its number of degrees
of freedom. A joint has as many degrees of freedom as the number of independent
motions it allows. The word independent is important. A screw rotates and translates,
two different motions, but these motions are not independent; they are connected by
the pitch of the thread, and one variable can describe the position and orientation of
the screw.

Consideration of the various joints that occur in machinery, such as nut and bolt,
ball and socket, and cam and follower, leads one to note that joints are not isolated
objects but pairs. A joint or connection is also called a kinematic pair.

Kinematic pairs are divided into lower pairs and higher pairs. The language comes
from Reuleaux (1876), as does the identification of the first three lower pairs. Lower
pairs are kinematic pairs, the elements of which contact along surfaces. Reuleaux
called these closed pairs. Modern terminology recognizes six lower pairs: (1) the
pin or revolute, (2) the sliding or prismatic, (3) the screw or helical, (4) the cylin-
dric, (5) the globular or spheric, and (6) the flat or planar pair. Figure 1.8 shows
sketches of the lower pairs (the first three from Reuleaux), and Table 1.1 summarizes
their properties.
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(d) (e) )

FIGURE 1.8  The six lower pairs: (a) the revolute; (b) the prism; (c) the screw or helix; (d)
the cylindric; (€) the spheric or globular; and (f) the planar, or flat. [Parts a-c after Reuleaux
(1876).]

Table 1.1 The Six Lower Pairs

Degrees of

Pair Symbol Variable Freedom Motion
Revolute R 0 1 Circular
Prism P s 1 Linear
Screw S fors 1 Helical
Cylinder C 0&s 2 Cylindrical
Sphere G 8, ¢, ¥ 3 Spherical
Flat F X, y, 8 3 Planar

All other pairs, such as gears, cams, wheels, chains, and belts, are called higher
pairs. These do not lend themselves to easy subclassification and will be deait with as
they arise.
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A set of links connected by joints forms a kinemaric chain. A closed kinematic
chain, in which the last link is attached back to the first, is called a mechanism. Chains
and mechanisms can be classified according to the nature of their movement. Chains
for which all link points move in parallel planes, so that the system can be projected
unambiguously onto a single plane, are called planar. Chains for which all motions can
be described as rotation about a single point are called spherical. For both these sys-
tems, the motion of a point can be described by two variables, the Cartesian x and y
for the planar case and the polar angles 6 and ¢ for the spherical. All remaining chains
are called spatial.

Most mechanisms in use today are planar, and this text will be restricted to planar
mechanisms after this chapter. The restriction to planar mechanisms means that only
two lower pairs will be considered: the revolute, which I will usually refer to as a pin,
and the prismatic, which I will usually refer to as a slider. In the interest of generality,
some properties of general mechanisms will be presented before the text becomes
restricted.

The subject of this text is relative motion. A useful mechanism is attached to some-
thing; it has a stationary link. The compasses, the vise grip, and the eyeglasses are
attached to the user. The corkscrews are attached to the bottle, which is held firmly
by the wine steward. The window mechanism is attached to the car. The brake mech-
anism is attached to the motorcycle. Nothing about the relative motion of the links
changes if the car is moving or the wine steward is in the dining car of a train (or on
the Concorde). On the other hand, a mechanism can seem very different if viewed from
a different perspective.

A mechanism is not fully specified until its ground link is defined. There is always
one link that is stationary, and that link is called the ground link, or frame link. The
positions of the other links can be defined in terms of a reference frame (coordinate
system) attached to the frame link. (There is something of a deliberate pun here; frame
has two meanings.)

Motion in Three Dimensions

A rigid object—a link—has six degrees of freedom. To define its position in space
requires six numbers. These can be chosen in several ways. The most convenient for
kinematic (and kinetic) analysis is to choose three to define the location of one point
on the link, and three more to define the orientation of the link with respect to the frame
(of reference). The location and orientation of the link can then be specified by choos-
ing the three coordinates of the fixed point (x, y, z), and three numbers, the direction
cosines, say, specifying the orientation of the line.

The usual way to specify the orientation of the line is in terms of its Euler angles.
For a complete development, the reader is referred to any of several books on dynam-
ics, such as McGill and King (1984) or Meirovitch ( 1970). I will outline the definitions
here.

The idea is to define, unambiguously, three angles relating the orientation of a link
as described in a coordinate system attached to the link to a fixed coordinate system
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FIGURE 1.9  Planar projections showing the three successive rotations in going from (x.'y,
z) 10 (X, Y, Z) through the intermediate coordinate systems (x', y', z') and (x", y", 2"): (a)
rotation about the z axis; (b) rotation about the y' axis; (c) rotation about the 7" axis.

attached to the frame. This is done operationally in the form of an algorithm that can
be followed to bring one coordinate system into correspondence with another. Three
such rotations suffice, and the magnitudes of the rotations are called the Euler angles.

The full three-dimensional picture is hard to draw. Figure 1.9 shows planar projec-
tions of the three rotations. Let x, y, z represent the initial coordinate system and X,
Y, Z the final system. The algorithm is as follows:
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1. Rotate an angle § around z, giving an intermediate coordinate system (x’, y', 2’).
Because the rotation was around z, z and z’ are identical.

2. Rotate an angle ¢ around y’, giving a second intermediate system, (x”, ¥y, z").
Because the rotation was around y’, y’ and y” are identical.

3. Rotate an angle y around z”, bringing the frame into correspondence with (X, Y,
Z). Because the rotation was around z”, z” and Z are identical.

MOBILITY

Attaching two links constrains the motion of each link. They must move together. How
they do this depends on the kind of pair used to join the links. To illustrate this, imagine
attaching a link to the frame using each of the various lower pairs. The frame defines
the frame of reference. It has no degrees of freedom. Attaching a link to the frame will
remove one or more degrees of freedom, the number depending on the type of joint.
Let the attachment point be the reference point on the link, and designate the link as 2,
so that its coordinates are x,, ¥,, 25, and 6,, ¢,, ¥,. The lower pairs are shown in
Figure 1.8. The axes of the first four—revolute, prism, screw, and cylindric—are taken
to be parallel to the z axis of a Cartesian system. The plane shown in Figure 1.8f is
taken to be the x-y plane.

Using these definitions to analyze each of the lower pairs in turn leads to the fol-
lowing constrained motions:

1. The revolute fixes x,, y;, z, and ¢,—the attachment point and the plane of the
motion, the x-y plane. The link can rotate around its attachment point. It is held
in the x-y plane, and its position is completely specified by the angle that the link
makes with the x axis, 6,.

2. The prismatic pair fixes everything except z,. The link can move along the z axis
without rotation. Its position is completely specified by the value of z,.

3. The helical pair fixes x,, y,, ¢, and ¥, and relates 6, and z,. The link rotates
around, and simultaneously moves along, the z axis. Because the helix is a speci-
fied screw with a specified pitch, the rotation angle 8, and the axial position Z; are
related. Either variable completely specifies the position of the link. The motion
is a constrained combination of the first two motions.

4. The cylindric pair fixes x,, y;, ¢,, and y,. This is an unconstrained combination
of the first two motions. Two numbers, 6, and z,, are required to specify the posi-
tion of the link.

5. The spheric pair fixes all three Cartesian coordinates and leaves all the angles free.
It takes three numbers to specify the position of the link. This is a universal joint.
The link can be rotated about three independent axes. (In reality, the rotation will
be limited by interference between actual physical elements. The ideal of full 360 °
rotation about three axes is not physically realizable.)

6. The planar pair fixes z,, 6,, and y,. It takes three numbers to specify the position
of the link. The motion of the link is confined to the x-y plane but totally uncon-
strained in that plane. The planar pair does not constrain planar motion; it is not
one of the lower pairs used in planar kinematics.

>
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These examples illustrate the general principle that adding an n-degree-of-freedom
joint to a system removes 6 — n degrees of freedom from that system, providing 6 — n
constraints.

The point of mechanism is relative motion. The total degrees of freedom is not of
interest. What is of interest is the number of degrees of freedom remaining when one
link is fixed. Fixing one link is equivalent to choosing the frame or ground link. The
number of degrees of freedom remaining is called the mobility, denoted by m. Let j|
denote the number of one-degree-of-freedom joints in a mechanism j,, the number of
two-degree-of-freedom joints, and so on to js. Let n denote the number of links. Then
the mobility is given by

m=6(m— 1) —5j, —4j, — 3j3 — 2js — Js (.1

This is called the Kutzbach mobility criterion for a spatial mechanism.

A system of no mobility cannot move. It is a structure. It is of no interest to a class
in kinematics. The question arises: Can anything general be said about the number of
links necessary to have a mobility greater than zero?

Consider a spatial mechanism with only lower pairs. The least restrictive lower
pairs have three degrees of freedom and provide three constraints. The minimum
mechanism will satisfy Equation (1.1) with m = 1, and jy, Ja, Ja. js all zero. To have
a closed kinematic chain, there must be at least as many joints as links. Set j3 = n,
and solve to find n = 7/3. That is, of course, silly. There must be an integral number
of links. The next integral number of links is three, for which the Kutzbach formula
predicts a mobility of 3.

The actual mechanism just specified is not useful. Consider three rods joined in
a triangle by spheric pairs. As each pair allows rotation in any direction, each rod
can rotate about its own long axis independently of the others. It is a three-degree-of-
freedom system (once the frame link is chosen). It is not a normal mechanism. It
doesn’t do anything that meets with one’s intuitive feeling about mechanisms. Is a more
restrictive set of joints any help?

How many links are necessary to have a useful (mobility at least unity) spatial
mechanism using just one-degree-of-freedom joints? Set m = 1 and j,—js equal to
zero, and rearrange to find

6n — 5j;, —7=0, (1.2)

the so-called Gruebler criterion. A closed kinematic chain must have at least as many
joints as links. Setting j, = n gives the least number of links and the simplest such
spatial mechanism, a seven-link, seven-joint mechanism.

The reduction to planar mechanisms is not direct. This is because the three spatial
degrees of freedom—z;, ¢, and 6, in the current setting—can be removed only once.
The problem of redundant reduction of freedom will be clarified shortly by a planar
example. Because of the ambiguity, it is easiest to consider planar mechanisms ab
initio, assuming the reduction to a plane to be given and working directly in two
dimensions.

A link confined to a plane has three degrees of freedom, two translational and one
rotational. Two links have six degrees of freedom. Welding them together reduces this
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to three. Pinning them together removes two degrees of freedom, leaving four. Only
one- and two-degree-of-freedom joints are possible in a two-dimensional system. If the
number of each is denoted by j, and j,, respectively, an argument parallel to that just
given gives the two-dimensional Kutzbach criterion

m=3n~-1)—-2j —j, (1.3)
and the Gruebler criterion reduces to
3n —-2j,—-4=0 (1.4)

from which the simplest mechanism is a four-link mechanism. A planar mechanism is
a special case of a spatial mechanism, but the smallest spatial mechanism with one
degree of freedom apparently needs seven links. What happened?

This is a pathological example of the Kutzbach and Gruebler criteria. They work
most of the time and provide an essential guide to what is happening but, in special
circumstances, they are incorrect. What has happened here is that some of the con-
straints are duplicate, redundant, when a spatial mechanism is reduced to a planar
mechanism. The first n—1-degree-of-freedom joints remove three translational and
two rotational degrees of freedom as each link is added. The remaining rotational
degree of freedom for each link is parallel to those before. The argument can be
rephrased mathematically as follows.

Let there be n links and j; single-degree-of-freedom joints. The first link is irrel-
evant, representing the gross motion of the mechanism. The second link has six degrees
of freedom, five of which are removed by the first one-degree-of-freedom joint. The
third link has five of its degrees of freedom removed when it is added. So, too, the
fourth link has five of its degrees of freedom removed when it is added. At this point,
there is an open kinematic chain of four links with three degrees of freedom. The
system cannot rotate or translate out of the plane. The last joint, reconnecting the fourth
link to the first, removes only two new degrees of freedom. The other three are already
gone. This argument can be extended to planar systems of more than four links, but
it is easier to use the reduced criteria (1.3) and (1.4).

Figure 1.10 shows several planar mechanisms involving only one-degree-of-
freedom joints: sliders and pins. For each, the formal mobility is given using the Kutz-
bach recipe. There are a number of things to note about this diagram. Most important
perhaps is the degree of abstraction. The minimum number of lines have been used to
represent the essential kinematic data. The second thing to note is the introduction of
the ground, or frame, link, that single link with respect to which the motion of the
others is to be considered. It is symbolized by the diagonal hatching beneath it. In this
figure, the ground link is drawn in a continuous fashion. This will not always be so.
In the future, remember that all joints attached to diagonal hatching are attached to the
same (kinematic) ground, or frame, link.

Figure 1.10c introduces one notation for a slider. The block is a link; it is a
separate rigid body with two joints, a pin (revolute) and a slider (prism), connecting
it to the two adjacent links.
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FIGURE 1.10  Some planar mechanisms and their formal mobility according to the Kutzhach

criterion: (@ n =4, j; =4, m=1 b)n=6j,=6m=3@n=4y}j =4, m=1
(d)n=5,j,=6,m=0;(e)n=6,j,=7,m=1;(f)n=5,j;=6,m=0.

Figure 1.10d illustrates an immobile mechanism, a structure (actually a simple
truss). This is the general situation for m < 0. Figure 1.10e shows a partially mobile
mechanism. It has a formal and actual mobility of unity, but only three of the five non-
ground links can move. It is effectively a four-link rather than a six-link mechanism.
Figure 1.10f is a pathological example of a mechanism with a formal mobility of zero
that is nonetheless mobile. A formal demonstration of this will make the idea of these
redundant, pathological cases easier to understand. 1 will outline such a demonstration
here, an imaginary assembly of the mechanism from its links.

When a contrary-to-fact answer emerges from these Kutzbach and Gruebler
criteria, it suggests the need to think more clearly and precisely. One useful tech-
nique is mentally to ‘‘assemble’” the mechanism, keeping track of what happens to the
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FIGURE 1.11  The steps in the mental assembly of a pathological mechanism: (a) attach links
2, 4, and 5 to the ground (frame); (b) attach link 3 to link 2; (c) attach link 3 to link 4;
(d) attach link 5 to link 3.

degrees of freedom as the assembly proceeds. To that end, let the frame be link 1, and
label the other links as shown in Figure 1.10f. Let the fixed points be A for link 2,
B for link 3, D for link 4, E for link 5. Denote the length of each link by r;, where
J takes on the values 1-5. The defining coordinates will be X;, ¥;, and ;. Without loss
of generality, I can let the frame link coincide with the x axis, and I can let 4 be the
origin. The assembly stages are shown in Figure 1.11.

Attach links 2, 4, and 5 to the frame (Figure 1.11a). This imposes the following
conditions:

X, =0 = y,, Xg=r,y=0, xs=a,y;=0 (1.5)

where a is the distance from A to E. The three angles 60,, 6,, and 05 are left
unspecified. The partial assembly has three degrees of freedom, a mobility of 3.

Attach link 3 to link 2 (Figure 1.11b). This determines the location of the fixed
point, the end of link 3, in terms of the orientation of link 2

X3 = Iy COS 02, Y3 =N sin 02 (16)

and leaves 603 unspecified. This partial assembly has four degrees of freedom. Now,
attach link 3 to link 4 (Figure 1.11c). Point C can be expressed in terms of both links
4 and 3. As the two expressions for C must be the same, this provides additional con-
straints. After some simple algebraic manipulation, the constraints become

rycos 8, + rycos 63 = r) + rycos 6,

rysin @, + rysin6; = r,sin 6, (.7
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These are two (nonlinear) equations in the three unknowns 6,, 03, and 6,. It happens
that they are sufficient to eliminate any two of the three angles. Let 6, be the angle
retained. This partial assembly has two degrees of freedom, conveniently retained in
the two angles 8, and 0s.

Now, attach the other end of link 5 to link 3 (Figure 1.11d). Point F is represent-
able in two ways, again providing two constraints. These constraints can be written as
the pair of algebraic equations

ry cos 6, + b cos 8= a + rs cos 05

ry sin 8, + b sin 3= rs sin b5 (1.8)

Recall that 85 is a function of 6,, so that these equations have two unknowns, 65 and
b, the distance from B to F. In general, there is a unique solution, and the arrangement
shown in Figure 1.10f is a structure. Note, however, that if , = ry = rsand r; =
rs, then the two pairs of Equations (1.7) and (1.8) can be made identical by setting
b = a, 6, = 0, and 6, and 65 equal to 6. The angle 6, remains unspecified, and the
mechanism can move. An alternative approach to mobility will be given in Chapter 6.

Figure 1.12 shows the mechanism of Figure 1.10d redrawn with the links and
joints labeled. This introduces a convention to be followed in this text: links will be
numbered and joints denoted by uppercase letters. Note that this mechanism remains
a structure, no matter where on link 2 joint E is placed (except at 4, when link 5
becomes redundantly equivalent to link 1, the frame, or ground, link). In particular,
if E is placed at B, the structure remains a structure. Remember this example when
counting joints. A pin that connects three links looks like a single pin on paper but is
actually two pins. If link 5 connected B to F, the joint at B would be counted twice
in calculating the mobility. Another way to remember this is to recall the idea of pair.
The pin may be a single pin in fact (supposed to be part of link 3, say), but it has one
surface that mates with a surface on link 2 and another that mates with a surface on
link S. This is shown in Figure 1.13.

1 1 1
FIGURE 1.12 A five-bar structure that has a formal and an actual mobility of zero.
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FIGURE 1.13  Two revolute Joints connecting the three bars 2, 3, and 5: (a) side view (eleva-
tion), (b) top (plan) view.
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Before leaving the subject of mobility, it is useful to discuss the application of
pathology to real mechanisms briefly. A planar mechanism is a special case of a spatial
mechanism and obeys the special Kutzbach and Gruebler criteria only insofar as it is
truly planar. In the real world, truly planar objects do not exist. Fortunately, truly ideal
joints also do not exist. A planar mechanism, then, will behave like an ideal planar
mechanism only if the imperfections in the joints are comparable to the imperfections
in the planar nature of the mechanism. That is, the (unavoidable) play in the Jjoints must
be comparable to the (unavoidable) misalignment of the mechanism.

We can get a feel for this behavior in two dimensions by looking again at Figure
1.10f. If the redundant diagonal member is misaligned, the mechanism becomes a
structure, but a slight misalignment can be compensated for by a sloppy joint, allowing
the link to wriggle into alignment when necessary.

EQUIVALENT MECHANISMS AND
KINEMATIC INVERSION

The degrees of freedom of the *“first’” link are irrelevant. (By convention, the first link
will be identified with the ground link, or the frame of the mechanism.) It must then
follow that the identity of the first link is also irrelevant to the overall relative motion
of the mechanism. That is true in principle. The abstract geometry of movement
doesn’t change with the choice of the first link. However, the utility of the mechanism,
the observer’s view of the mechanism, and the effectiveness of the mechanism in a
machine depend heavily on the choice of frame member.

Mechanisms that are identical except for the choice of the frame member are called
equivalent mechanisms. The process of changing the frame member is called kinematic
inversion. Figure 1.14 shows the four equivalent mechanisms for the slider crank. The
first is identical to the mechanism shown in Figure 1.10c. To make the process clearer,
the links and joints are not relabeled from inversion to inversion. This is a temporary
departure from the usual convention that the frame link is always labeled link 1.
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FIGURE 1.14 The four inversions of the slider-crank mechanism: (@) the crank slider;
(b) the center of the slider moves in a circle around B; (c) the slider pivots about its center;
(d) the slider is stationary, and B moves in a circle about the center of the slider.

The first inversion is the slider crank. Link 2 rotates with respect to the frame,
and link 4 oscillates without changing its orientation. If link 4 is driven, this is a model
of one cylinder of an internal combustion engine: link 1 is the block, link 2 the crank-
shaft, link 3 the connecting rod, and link 4 the piston. If link 2 is driven, this can be
a pump. In the next inversion, both links 1 and 3 rotate. With suitable stops, this can
be a model of a window closing mechnism: link | is the window, link 2 is the building,
and links 3 and 4 form the closing mechanism. (As drawn, this is a poor mechanism,
but the object of this exercise is to keep the dimensions the same to emphasize the pro-
cess of inversion.) In the third inversion, link 2 rotates and links 1 and 4 rock. In the
fourth inversion, link 3 rocks and link 1 moves back and forth. The mechanism closely
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resembles the first and shares with it an ambiguity of motion that will be more fully
explored later.

The process of kinematic inversion is general. Any mechanism can be inverted by
simply changing the identity of the frame. The illustration was a very simple four-link
planar mechanism. Do not let this obscure the generality of the process. Similarly, the
Kutzbach and Gruebler criteria, although they fail in what the mathematician would
call pathological cases, are general. The next chapter explores the less general situation
of bar linkages, which are mechanisms consisting only of bars connected by pins.

ABSTRACTION OF SOME REAL MECHANISMS

Before moving on, consider the real mechanisms described qualitatively in this chapter.
The language developed and the idea of abstraction will reveal the essentials of the
mechanisms and their commonality. Because the first two modern mechanisms are
“‘pathological,”” the discussion will begin with the third, the sommelier’s corkscrew.
I will return to the first two at the end of the chapter.

Examination of Figure 1.3 reveals that this mechanism, considered as a unit, with
bottle and cork attached, has four links. These are (1) the bottle, (2) the pivot, (3) the
handle, and (4) the screw and cork unit. There are three obvious lower pairs, the pins
at b and c and the prism between the cork and the bottle. The joint at a is a higher
pair, a complicated contact. There is slippage between bottle and corkscrew, as well
as rotation; however, for most purposes, it is sufficiently close in behavior to a revolute
to be replaced by a revolute for analysis. This is another example of abstraction, a more
artistic abstraction or approximation. Figure 1.15 shows the abstracted mechanism
drawn to scale. It is a slider-crank mechanism, and the labeling of the links in the figure
is the conventional one for the slider crank.

The device shown in Figure 1.4 is very similar. It is a kinematic inversion of the
slider crank, with the crank element fixed. Thus, the link labeled 1 in that figure is
the crank of Figure 1.3. The joint at q is again actually a higher pair, but equivalent
to a revolute, and replaced by a revolute in Figure 1.16, the abstraction of this mech-
anism. Note that the spring has been omitted in the abstraction. The spring provides
a force constraint, not a geometric constraint, and the necessary language has not yet
been introduced. You should convince yourself that the spring neither subtracts nor
adds geometric degrees of freedom.

The next three mechanisms, Figures 1.5-1.7, are all four-bar linkages. Each has
four links (remember to count the frame link) and four revolutes for a formal and actual
mobility of unity. Figure 1.17 shows the abstractions for all three.

The corkscrew-bottle mechanism of Figure 1.2 must be considered as a unit, as
was the first corkscrew. It has four links: the two arms, the bottle-frame combination,
and the shaft-screw-cork combination. The number and type of joints depends on the
attitude taken by the analyst. If there is no rotation of the cork, as is the case in practice,
then the mechanism is a planar mechanism and it has two pins, two gears (higher pairs),
and one prismatic joint, the cork in the neck of the bottle. All the joints are single-
degree-of-freedom joints, and the formal mobility is — 1. This is another pathological
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FIGURE 1.15 A kinematic abstraction FIGURE 1.16 A kinematic abstraction
of the sommelier’s corkscrew. of the eveglass earpiece mechanism.

(b)

FIGURE 1.17 Kinematic abstractions of three four-bar mechanisms, shown together to
emphasize their similarity; (a) the motorcycle foot-brake linkage; (b) the auto window mech-
anism; (c) the locking pliers.

example. The explanation here is clear, however. The two gears and the prism are
redundant; they all remove the same degrees of freedom, preventing sideways motion
and rotation. Thus, the true mobility is unity.

The compasses of Figure 1.1 are not a planar mechanism. This was noted in the
Introduction to this chapter. Count the physical elements: two legs joined by a pin at
a, a threaded rod, and two further pins at b and ¢. There are six elements, six links,
and there are six one-degree-of-freedom joints, all lower pairs, four revolutes, and two
helices. Alternatively, the count can omit the actual physical pins and include only two
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legs and the screw element, with one one-degree-of-freedom joint, the pin at a, and
two two-degree-of-freedom joints, the threaded pins at b and c. The former count,
inserted into the Kutzbach criterion for three-dimensional mechanisms gives a formal
mobility of zero, and the latter a formal mobility of —1. The actual mobility is unity.
The compasses are a pathological mechanism.



Chapter 2

Bar Linkages

First, note that it is conventional to apply the term linkages to planar mechanisms
involving only lower pairs. Bar linkages are made up of links or bars pinned together.
Bar is a convenient term used for links with only pin joints. Bars are not necessarily
bar-shaped. Bars may have more than two pin joints. The analyst may be interested
in points on a bar not lying on the line joining any two pins. When either (or both)
of these circumstances obtains, it is convenient to represent a bar by a polygon, fre-
quently a triangle.

Figure 2.1 represents a four-bar linkage. Parts a and b of the figure are taken from
Reuleaux. Figure 2.1a shows four bars connected by four pins. It is not yet a defined
linkage because no ground line has been chosen. Figure 2.1b shows an elegant ground
link. Figure 2.1c is a modern abstraction of the linkage, illustrating the convention to
be followed in labeling four-bar linkages: the frame will be link 1; link 2 will be called
the crank, link 3 the coupler, and link 4 the follower. The four pin joints will be labeled
as shown. The Gruebler criterion for planar mechanisms, Equation (1.4), indicates that
the four-bar linkage is the simplest nontrivial bar linkage. Four-bar linkages are
common, and much lore has grown up about them. Some of this lore will be explored
shortly.

Each additional link adds three degrees of freedom, and each additional pin
subtracts two. Thus, a five-bar linkage with five pins has a mobility of 2. A five-bar
linkage with more than five pins is a structure. Figure 2.2 shows a five-bar linkage
with five pins and one with six pins. The latter has a double pin, labeled B, F. Six-bar
linkages are mobile with six pins (m = 3) or seven pins (m = 1). The reader can go
on in the obvious fashion. Bar linkages with an even number of bars have mobilities
that are odd numbers. Bar linkages with an odd number of bars have mobilities that
are even numbers. Because a mobility of 1 is of particular interest in mechanism
design, allowing for control with a single input driver, bar linkages with an even num-
ber of bars are common. Those with an odd number are not.

Rules for even bar linkages of mobility 1, a small subset of bar linkages, are not
plentiful. This is because the linkages become rapidly more complicated as the number
of bars increases. I will discuss these briefly at the end of the chapter. Four-bar link-
ages are common and well understood and can be exhaustively classified.

23
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FIGURE 2.1  Three stages in the representation of a four-bar linkage: (a) the free linkage,
a kinematic chain, not a mechanism; (b) the mechanism formed by grounding the link shown;
(c) a kinematic abstraction of the mechanism. [Parts a and b after Reuleaux (1876).]

(a) (b)

FIGURE 2.2 A five-bar linkage with two degrees of freedom can be changed into a structure
with zero degrees of freedom by adding a joint: (@) the linkage; (b) the structure.

FOUR-BAR LINKAGES
The general four-bar linkage has four bars of different length. The behavior of the

linkage depends entirely on the relative lengths of the bars. It is conventional to denote
the length of the shortest bar by s, that of the longest by /, and the two intermediate
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lengths by p and q. Where there is no risk of ambiguity, the bars will carry the labels
used to denote their lengths. The most important property of a linkage is that any bar
can perform a complete rotation with respect to the others. This is necessary for a
mechanism that is to be driven by a motor, or any prime mover providing rotary
motion. Grashof’s criterion states that the shortest link will rotate continuously with
respect to the other three if

s+l<p+gq 2.1)

If this condition is not satisfied, no link can make a complete revolution with respect to
any other. Mechanisms for which the condition holds are called Grashof mechanisms.

The criterion is a consequence of simple geometry. Figure 2.3 shows two mech-
anisms. The left-hand mechanism satisfies the Grashof condition and the right-hand
does not. The relative link lengths in each diagram are: 10, 5, 15, 19 and 10, 5,
15, 21. The left-hand diagram shows the mechanism at 6, = w/2 (dashed lines) and
6, = 0. The lower diagram shows §, = «/2, and at its minimum, the value of which
is left as an exercise for the reader. This example is one for which complete rotation
is prevented by a forbidden zone near 6, = 0. More common is the case in which
ri + r, > r; + r4 and the forbidden zone is near 8, = .

In a Grashof mechanism, the shortest link can rotate completely with respect to
the other links. Sometimes this rotation is subtle, as I will now show. Figure 2.4 shows

(b)

FIGURE 2.3 A Grashof linkage can be changed into a non-Grashof linkage by slight changes
in dimension: (a) the Grashof version; (b) the non-Grashof version. Here the longest link grows
slightly longer. The solid lines in part b show the inner limits of rotation.
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(b)

FIGURE 2.4 The rwo kinematically distinct assembly positions of a Grashof chain: (a) the
shortest and longest links are adjacent; (b) the shortest and longest links are opposite each other.

two potential linkages, each with relative lengths s:p:q:/ = 4:8:10:13. Figure 2.4a has
s and [ adjacent; Figure 2.4b has s and ! opposite.

Consider the linkage of Figure 2.4a and fix, in turn, s, p, ¢, /. This is an example
of kinematic inversion. Each new fixed frame link gives a new equivalent linkage. The
resulting linkages are shown in Figure 2.5 a-d. The first two show the extreme cases,
that of (a) a double crank, or drag link, and (b) a double rocker. In the latter, neither
the crank nor the follower can rotate completely with respect to the frame. According
to the Grashof criteria, s, here the coupler, can. The reader may find it instructive to
verify this, either by a series of sketches or a model. The final two linkages show that
with either g or / fixed, the crank, taken to be s, can rotate and the follower cannot.
These linkages are called crank-rocker mechanisms.
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o7 - N
N
/s P -~ §
/ e \
/ 4 AN
/ // AN
/ \\
, N
| | l‘
| /
\ \ /1
\ \ //
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N \\ // FIGURE 2.5 The four inversions of
AN - S— 7 a Grashof linkage: (a) The shortest link
~ o 7 is grounded; the linkage is a double
~— crank (drag link). (continued)
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(b) (©)

(d)

FIGURE 2.5 (continued) (b) The link opposite the shortest link is grounded; the linkage is
a double rocker. (c) An intermediate link (q) adjacent to the shortest link is grounded; the linkage
is a crank rocker. (d) The longest link, which is adjacent to the shortest, is grounded; the linkage
is a crank rocker.

The reader should verify that the same sequence of linkages can be generated using
the assembly of Figure 2.4b. The nature of the mechanism depends only on the relation
of the fixed link to s. With s fixed the linkage is a drag-link mechanism. With the
opposite link fixed, the linkage is a double rocker. Fixing either of the other links gives
a crank-rocker mechanism.

This can be applied to the three four-bar linkages introduced in Chapter 1 and
shown in Figures 1.5-1.7. Table 2.1 gives the relative dimensions of the three systems,
letting r, be unity. The first two are crank-rocker mechanisms, provided with stops so
that the crank does not actually perform complete rotations.

Table 2.1 Three Four-Bar Linkages

Linkage r r3 r4 s P q 1 Type

Foot brake 0.162 0.98 0.204 0.162 0.204 0986 1.000 Crank-rocker
Car window 0.026 0.041 1.000 0.026 0.041 1.000 1.000 Crank-rocker
Vise grip 0.787 0.320 0.507 0.320 0.507 0.787 1.000 Non-Grashof
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The vise grip as given is a non-Grashof mechanism. Point d can be moved out far
enough to make the mechanism into a Grashof mechanism. The mechanism would then
be a double rocker, with the potential for the shortest link to rotate completely. The
shortest link, however, is the handle and the pliers have stops to limit how far the
handle can rotate.

SIX-BAR LINKAGES

The six-bar linkage with unit mobility has seven pins. Figure 2.6 shows a six-bar mech-
anism with six pins (m = 3) converted to one with seven pins by removing one link
and connecting it across two of the remaining links, reducing the mobility to unity. The
resulting mechanism has two links with three connections, links 1 and 3 in the example.
These are called ternary links; the other links are called binary links. You should con-
vince yourself that any six-bar linkage with unit mobility has exactly two ternary links.

The original linkage had a single closed loop. The modified linkage has two
distinct, independent closed loops. This is a necessary consequence of reconnection.
For the new linkage to be a “‘real’’ six-bar linkage, the new independent linkages must
each have at least four links. A loop with only three links is immobile. There is a third,
nonindependent outer loop. The three loops in Figure 2.6 are the inner loops, I: 1-2-3-5
and II: 1-5-3-4-6, and the outer loop III: 1-2-3-4-6.

(b)

FIGURE 2.6 A six-bar linkage with three
degrees of freedom can be converted into one
with one degree of freedom by reconnecting to
add a joint: (a) the linkage before reconnection;
(b) the reconnected system—a Stephenson Il six-
bar linkage.
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Distinct types of mechanisms in a system with two ternary and four binary links
will be obtained, depending on whether the ternary links are adjacent. Other distinc-
tions are kinematic inversions of one of the two basic types. The Watt mechanism has
the two ternary links adjacent; the Stephenson has them separated. The mechanism in
Figure 2.6 is a Stephenson six-bar linkage. The Watt linkage is further subdivided into
Watt I, for which the ground link is binary, and Watt II, for which it is ternary. The
Stephenson linkage has three realizations. Stephenson I uses one of the binary links
separating the two ternary links as the ground link. The Stephenson II uses one of the
other two binary links as ground, and the Stephenson III uses one of the ternary links
as ground. Figure 2.6 shows a Stephenson III. Figure 2.7 shows ali five six-bar link-
ages of unit mobility.

The various six-bar linkages have quite different degrees of complexity. This will
be seen quantitatively when analysis and synthesis techniques for six-bar linkages are
explored. For now, note that the Watt linkages are made up of two closed four-bar
linkages. The Watt II is particularly simple. The follower (link 4) of the first four-bar
linkage (links 1-4) is the crank of the second linkage (links 1 and 4-6). This is called
a cascaded four-bar linkage and can be analyzed using the techniques to be developed
for four-bar linkages. The Watt I is somewhat more complicated, although it is obvious
that the position of links 4 and 5 can be found from geometry once the positions of
links 3 and 6 are known. Those are just the coupler and follower of the first four-bar
linkage. The difference in complication is that the second four-bar linkage in the Watt
I has no ground link.

FIGURE 2.7 The five kinematically distinct six-bar linkages: (a) the Watt 1; (b) the Wart II;
(c) the Stephenson I; (d) the Stephenson II; (e) the Stephenson II.
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The Stephenson linkages are made up of a four-bar and a five-bar linkage. In the
Stephenson I and III linkages, the basic four-bar linkage is solvable separately, and the
result of that solution provides the location of three of the five bars in the other (five-
bar) linkage, so that the other two can be found simply. The Stephenson II is a basic
five-bar linkage attached to a floating four-bar. The correct method of solution is not
obvious and will be deferred until Chapter 5.

The process of kinematic inversion is general. It can be applied to six-bar linkages
in the same way as it was to four-bar linkages. Figure 2.8 shows the six inversions
(one for each distinct link) of the Watt I linkage shown in Figure 2.7a. Inversions 1,
2, 4, and 5 are Watt I linkages. The others are Watt II linkages.

3
' Y

rY
LS
4,

FIGURE 2.8 The six inversions of a Watt I six-bar linkage.



Bar Linkages 31

(@) (b)

" FIGURE 2.9  An eight-bar linkage with five degrees of freedom can be converted into one with
one degree of freedom by reconnecting to add two joints: (a) the linkage before reconnection,
(b) the reconnected system.

LINKAGES WITH MORE THAN SIX BARS

The reader interested in combinatorics and graph theory may find it amusing to investi-
gate the various ways in which one can form eight-bar linkages of unit mobility. One
case requires four ternary links and four binary links and is constructed in the same
fashion that the m = 3 six-bar linkage is converted into the m = 1 six-bar linkage.
Figure 2.9 shows the process. The resulting linkage has two four-bar sublinkages and
one six-bar sublinkage. (In trying to construct additional examples, remember that all
sublinkages must have at least four bars or a portion of the mechanism will be locked
and the effective total number of bars reduced.)

A great deal of effort has been expended to answer the question of how many
mechanisms of a given degree of freedom can be formed from a given number of links.
A complete exploration of this is beyond the scope of this text, but some idea of the
complexity of the problem is in order. Freudenstein and Dobrjanskyj (1964) developed
a number of general relations, which they applied in detail to the question of eight-bar
linkages of unit mobility, the case for which one example has been given. They intro-
duce the concept of the basic kinematic chain (BKC), which is an ungrounded mech-
anism. This is equivalent to the reduced linkage used earlier. There are two distinct
BKCs for the six-bar linkage of unit mobility, the Watt and the Stephenson. There are
16 eight-bar BKCs with unit mobility. Figure 2 of the Freudenstein and Dobrjanskyj
paper shows these.

The two six-bar BKCs of unit mobility led to five distinct mechanisms. The 16
eight-bar BKCs of unit mobility lead to 71 distinct mechanisms! Woo (1967) demon-
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strates that there are 230 ten-bar BKCs of unit mobility and shows all of them in
diagrammatic form.

The focus of modern research in this area is the computerization of mechanism

generation. This is beyond the scope of a basic course, but the interested reader can
start with the thorough modern summary by Olson et al. (1985).

EXERCISES

1.

{3,

For the four-bar linkages with dimensions (in mm) shown in the following table:

Link 1 Link 2 Link 3 Link 4
23 23 25 27
14 22 27 30
22 12 24 20
18 18 18 18

a. Identify the Grashof linkages.
b. For the Grashof linkages, find the link(s) that can rotate completely.

For the linkages for which either link 2 and/or link 4 cannot rotate completely,
find the angle limits.

d. Draw all four linkages. If more than one assembly position is possible, draw
all assembly positions.

e. Classify (crank rocker, drag link, or double rocker) the four-bar linkages
shown in Figures 1.5-1.7. Take the dimensions directly from the figures, and
use 800 mm for the unmeasurable dimension in Figure 1.6.

Identify the independent loops in the mechanisms shown in Figure 2.7. How many
bars in each? What is the formal mobility of each loop? How does the mobility
of the linkage follow from that of the loop? (Hint: Think about the virtual assembly
process introduced in Chapter 1.)

How many independent loops are there in the eight-bar linkage shown in the
bottom half of Figure 2.9? Can you suggest a general rule for independent loops
in a one-degree-of-freedom linkage? Can you prove it?

Show that the Stephenson II and Stephenson III linkages can be obtained from the
Stephenson I by kinematic inversion. Identify the specific inversions by identifying
which link in Figure 2.7c has been grounded to produce the other

types.

Enumerate the types of eight-bar linkages, and classify their kinematic chains
according to the types of links (quaternary, ternary, binary) they contain.
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Draw the kinematic inversions of the eight-bar linkage shown in Figure 2.9.

The figure shows a plow mechanism. There are two hydraulic cylinder controls
that function kinematically like sliders. Identify all links and joints, and give the
degrees of freedom.

In the plow diagram, if AD is the frame link in a local four-bar linkage, and the
dimensions are as follows: AB = 13.5 in., BC = 14.75 in., CD = 19 in.,
DA = 16 in. What kind of linkage is this?

What is the formal mobility of each of the following mechanisms?

H
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# 10. What is the mobility of the following mechanism?

11. Identify the mechanism type of the four inversions of the kinematic chain for
which the first inversion is r; = 100, r, = 340, r; = 470, and r, = 340.
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Chapter 3

Mechanisms,
Coordinate Systems,
and Vectors

THE FRAME OF REFERENCE

To analyze and synthesize mechanisms analytically, whether by hand or using the
digital computer, it is necessary to be able to represent the position and orientation of
links analytically. Eventually, I will use complex variables, which are ideally suited
for planar mechanisms. Before introducing this novelty, 1 will briefly review analytic
geometry and vector notation. The vector representation is more general than the com-
plex variable representation. Spatial mechanisms cannot be analyzed using the complex
variable techniques that form the backbone of this text. The reader should be aware
that the third dimension is included only for completeness and for comparison to other
general vector formulations. The book is otherwise restricted to two dimensions, and
the reader who feels firmly in control of vector analysis can skim this chapter.

To describe the position or location of a point, there must be a frame of reference.
This is obvious but often forgotten in simple everyday location tasks like map reading.
Maps have a built-in, agreed-upon frame of reference—latitude and longitude (and
height above sea level for a topographic map). For the description of a mechanism,
it is necessary to construct a frame of reference, typically a Cartesian coordinate
system. This is a six-degree-of-freedom task, three degrees of freedom to locate the
origin and another three to specify the orientation of the axes. (These are the same six
degrees of freedom that were subtracted from the calculation of the mobility of a spatial
mechanism. The three orientation variables can be the Euler angles.)

Once a coordinate system (reference frame) has been defined, any point in space
can be located uniquely by its distance from the origin (O) in the three mutually perpen-
dicular directions defined by the coordinate frame. Figure 3.1 shows a Cartesian
system and a point P. The coordinates of P are xp, yp, Zp. Let there be a second point
Q with coordinates xg, yg, Zo. Imagine a link connecting points P and Q. The link has
an existence quite independent of the coordinate system. How can the description of
the link be made independent as well?

37
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y
Yp
> ——— e ——
P
- I
' < I
Py |
' |
| |
| |
! |
! b
- x
| /// d FIGURE 3.1 A point P in a Cartesian
_______ j, < coordinate system, showing the coordinates
Zr of the point, xp, yp, Zp.

VECTOR ANALYSIS

A vector is a directed line segment. It has length and direction. In general, its location
in space is not important. If a vector is moved through space without changing its
length or orientation, it is unchanged just as a physical object is unchanged by its
motion. Thus, a vector is a convenient mathematical abstraction of a link. The line
connecting the origin to P can be made a vector most simply by drawing it and
putting an arrowhead on the end at P, as in Figure 3.2. Call this the vector to P
from O, and write it Rpp. Figure 3.2 also shows the vector to Q from the origin
and the vector to Q from P. The vector to Q from the origin should be the sum of
the vector to P from the origin and the vector to Q from P. It is the role of the notation
to make that work.

P

Rpo

FIGURE 3.2 Two points, P and Q, in
a three-dimensional Cartesian frame, and
their associated vectors Rpg, Roo and
the difference vector R gp.
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Let e,, e,, e, denote unit vectors in the x, y, and z directions. These can be visual-
ized as arrows of unit length pointing in the positive x, y, and z directions. The vector
to P from the origin can then be written as

RPO = Xp€, + ypey + z,pez (3“

and the vector to Q from the origin as

Rgo = xge, + ype, + zge; (3.2)

The difference

Rop = Rgo — Rpo = (xg — xp)e. + (yo — yp)&, + (29 — zp)e.  (3.3)

is the desired vector to Q from P.

Note some conventions that will be used for vector analysis. Vectors will be
printed in boldface. The unit vectors will be denoted by e and will carry a single sub-
script denoting the direction. Other vectors will carry two subscripts with the letter
denoting the ‘*head’’ of the arrow before that denoting the ‘‘tail.”” This notation is quite
cumbersome and, where it is possible without ambiguity, I will use a simpler notation,
in which a vector is denoted by a single boldface unsubscripted letter and its compo-
nents by the same letter in lightface with a single subscript:

A =Ae + Ae, + Ae, 3.4

Addition and subtraction of vectors is easy and has been tacitly introduced. One
adds and subtracts the components separately. Two separate products can be defined.
(There is actually a third, but it has no use in kinematics and will be ignored here.)
The first is the scalar, inner, or dot product. As its first name indicates, it is a scalar,
formed by multiplying the pairs of components and adding the three products. The
operator is symbolized by a dot:

A*B=AB + AB, + AB. (3.5)

The magnitude of A * B is equal to the length of A times the length of B times the
cosine of the angle between the two vectors. From this it follows that the dot product
of a vector with itself represents the square of the length of the vector. The dot product
of two perpendicular vectors is zero. The dot product of two different unit vectors is
zero and that of a unit vector with itself is unity.

The second is the vector, outer, or cross product. This produces a vector that is
perpendicular to the two vectors from which it is formed. It points in the direction a
right-hand thread screw would move when the first vector is turned into the second.
This handedness means that the cross product does not commute: A X B # B X A,
It is most easily formed using a determinant:
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A X B =|eee, |=(4,B, — 4,B)e,
AAA; | + (A.B, — AB))e,
B.B,B, | + (AB, — A,B,)e, (3.6)

The length of the cross product is the product of the two lengths multiplied by the sine
of the (smaller) angle between them. The cross product of two parallel (or antiparallel)
vectors is zero; therefore, the cross product of any vector with itself is zero. The unit
vectors obey the following cyclical rules:

€ Xe =¢
e, X e =e

e, Xe =e 3.7)

All this material is available in any good text in vector analysis or calculus (e.g.,
Greenspan and Benney 1973). I have included it here as review, to introduce consistent
notation and to make this text self-contained.

MECHANISMS AS VECTOR CHAINS

A bar linkage can be represented vectorially by replacing each bar by one or more vec-
tors. Analysis of a four-bar linkage requires only one vector per bar. Linkages with
more bars will require more vectors per bar. It should be clear that a binary link is
uniquely defined by one vector, a ternary by two, and so forth. More general mech-
anisms require more general formulations. A vector skeleton can be constructed for
any mechanism by defining a set of vectors linking distinct joints in a way kinemat-
ically equivalent to the actual mechanism. Some of the vectors in such a set can change
their length during the operation of the mechanism. Some examples will clarify this
prescription.

Figure 3.3 shows a four-bar linkage and a vector skeleton that represents it. Each
link, including the frame, has been replaced by a vector. Figure 3.4 shows a Stephen-
son III six-bar linkage (from Reuleaux), and a vector skeleton that represents it. The
six-bar linkage has been represented by eight vectors. Each ternary link has been
replaced by two vectors, necessary to depict the complete set of connections among
the joints. Note that the choice of the extra vectors is not unique. Any two of the three
sides of a ternary link will do. Note also that no new degrees of freedom have been
introduced, as the vectors R; and R/ are known when their unprimed versions are
known. They represent different aspects of the same link.

Figure 3.5 shows an offset slider-crank mechanism, and one choice for a vector
skeleton. Link 4, the slider, has vanished from the vector representation. There is no
stationary vector in this diagram, and there is only one fixed point, the crank axle. This
is the price one pays for the reduction to three vectors. It is too steep a price to pay.
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(@

FIGURE 3.3  lllustration of the conversion of a mechanism to a vector diagram: (a) the phys-
ical mechanism; (b) the corresponding vector diagram.

©

@‘9‘@

ON ©)
@

FIGURE 3.4  [lllustration of the conversion of a six-bar (Stephenson [ll) linkage to a vector
diagram: (a) the physical linkage [after Reuleaux (1876)]; (b) the vector diagram.

R2

(@) (®)

FIGURE 3.5 [llustration of the conversion of a slider-crank mechanism to a vector diagram:
(@) the physical mechanism; (b) the vector diagram.



42  Mathematical Preliminaries

Rj

FIGURE 3.6 A four-vector diagram of an
Ry offset slider-crank mechanism.

A better choice is a four-vector representation. Figure 3.6 shows the four-vector
representation. The new R, is stationary, and it represents the frame in much the
same way as R, represents the frame in a four-bar linkage. R, is variable, changing
its length but not its direction. This representation helps unify the treatment of four-bar
linkages and slider-crank mechanisms.

Figure 3.7 shows the vector skeleton for a cam follower system. Here all the infor-
mation is in the cam vector R,, which points from the axle to the contact point. Cams
will be considered in some detail in Chapter 7, after the necessary analytical machinery
has been developed.

In the preceding representations, no mention has been made of the coordinate
system. Vector representations are independent of the coordinate system. However, if
one is to assign numbers to these vectors, say, for digital computation, it is necessary
to choose a specific coordinate system. It is almost always most convenient to attach
the coordinate system (reference frame) to the frame of the mechanism. This will be
done throughout this text unless it is noted specifically. The origin is best placed at a
fixed point, and in all the preceding examples, the joint connecting the frame to the

(/

R

(@ (b)

FIGURE 3.7  lllustration of the conversion of a cam-follower pair to a four-vector diagram:
(a) the physical mechanism; (b) the vector diagram.
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FIGURE 3.8 A four-bar linkage in a
two-dimensional Cartesian frame.

crank is such a fixed point. For planar mechanisms, the z axis is taken perpendicular
to the plane of the mechanism, so that that plane is the x-y plane. The x axis can be
chosen in any convenient direction. It will typically be taken to be horizontal in this
text. The y axis lies in the same plane, rotated 7/2 in a counterclockwise direction from
the x axis. Figure 3.8 shows a four-bar linkage with a conveniently chosen coordinate
system.

The same sort of vector idealization can be constructed for the various planar
mechanisms of Chapter 1. As an example of a four-bar linkage, take the vise-grip pliers
shown in Figure 1.7. Figure 1.17c shows an abstraction of this mechanism. It can be
made to look more like a standard four-bar linkage by drawing it as in Figure 3.9.

The sommelier’s corkscrew, shown in Figures 1.3 and 1.15, can be seen in the
standard slider-crank orientation as the vector skeleton of Figure 3.10.

Rj
A
R, Rs
Ry
FIGURE 3.9 The vector skeleton (diagram) FIGURE 3.10 The vector skeleton
for the locking pliers (rotated to put the frame for the (reoriented) sommelier’s cork-

link at the bottom of the diagram). screw.
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EXERCISES

For the mechanism shown in Figure 1.4:
a. Construct a vector skeleton with a suitably defined ground link.
b. For each vector in the skeleton:
Does its length change?
Does its direction change?
c. How are the answers to question b affected by the choice of ground link?

Repeat exercise 1 for the mechanism shown in Figure 1.5.
Repeat exercise 1 for the mechanism shown in Figure 1.6.

The mechanism shown in Figure 1.1 is not a planar mechanism, yet its useful mo-
tion is in a plane. Construct a vector skeleton for its useful motion. (Hint: Choose
one of the tips as a fixed point, and include a vector joining the tips in the skeleton.)

Construct a planar vector skeleton for the pathological mechanism shown in Figure
1.2.



Chapter 4

Complex Variables

HISTORICAL ORIGINS

The geometry and behavior of planar mechanisms can be expressed entirely in terms
of complex variables. This treatment is equivalent to the vector representation but is
more compact and easily manipulated, ideally suited for digital computation, partic-
ularly using computer languages that support complex arithmetic. To use this represen-
tation, some understanding of complex numbers and facility in their manipulation are
necessary. This section provides a self-contained discussion of complex variables at the
level necessary for planar kinematics. There is a nice *‘philosophical’* discussion in
Courant and Robbins (1941).

Complex numbers arise naturally in the attempt to solve general polynomial equa-
tions. The fundamental theorem of algebra, first correctly proved by Gauss (Bell
1956), states that any polynomial expression of degree n can be factored into exactly
n factors, that is, that

P=z"+Cp_z" '+ +C,
=G@-Ne-8 ... @— & 4.1
where z is a variable and Cy, C, . . . , C,_, are constants. The n constants |,
&, ..., &, (not necessarily different) correspond to the roots of the nth-order equa-

tion obtained by setting the nth-degree polynomial equal to zero. Thus, an nth-degree
equation has n roots (not necessarily distinct). Linear equations have one root, qua-
dratic equations two roots, cubic equations three roots, and so on.

The student of today encounters complex numbers in algebra when the formula for
the solution of quadratic equation is introduced. Recall that the formal solution of

a2 +bz+c=0
is

b 1
= —-—— + —{b? — dac}”
¢ 2a—2a{ ac}

45
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The quantity b2 — 4ac is called the discriminant, and one learns that there are no real
solutions if the discriminant is negative. When the discriminant is negative, it can be
written b2 — 4ac = (—1)(d?), so that {b?> — 4ac}* = +di. Then, putting —b/2a =
x, dl2a =y,

Z=x=ly

is the solution for the negative discriminant.

The theorem is untrue if the roots are required to be real numbers. (Real numbers
include both rational numbers, those expressible as a ratio of two integers, and irra-
tional numbers, not so expressible, such as = and e, the base of the natural logarithms.)
The simplest counterexample is P»(z) = z2 + 1 which, according to the theorem,
must have two roots. Following what would be the usual operations of algebra leads
formally to the two roots

G=~-L H=-v-I 4.2)

The +/ 1 has no meaning in the field of real numbers, so that one defines i = /—1 as
the unit imaginary number. Any imaginary number can be represented as a magnitude
times the unit imaginary number i. For example, the solution to

2?2 +4=0

isz = +2i

A complex number has a real and imaginary component. The real component is
a real number. The imaginary component can be written as a (real) magnitude times
the unit imaginary number /, defined as the (positive) square root of —1. A complex
constant will be written

a+ib

o
fl

and a complex variable

z=x+iy
As is the normal practice in algebra, ¢ will stand for a specific number, say, 3 + 4,
and z for a variable. It is conventional to refer to a as the real part of ¢ and to b
as the imaginary part of c. In the same way, x is called the real part of z and y the
imaginary part of z. Note that the imaginary part of a complex number is a real
number, whereas the imaginary component of a complex number is an imaginary
number.

It is useful to have operators that take the real and imaginary parts of a complex
number. These will be symbolized by Re and Im, as in x = Re(z) and y = Im(2).

Note that the quadratic formula applies when a, b, and ¢ are complex. Establishing
the meaning of the formula is a little outside the mainstream of the text, but it provides
a useful example of complex arithmetic, which will be used throughout the text. I will
return to this once I have introduced the various arithmetic operations.
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ARITHMETIC

The rules for complex arithmetic are simple. The sum of two complex numbers ¢, and
¢, is formed by adding the real and imaginary components separately, so that

o+ 0 =(a +a) +ilb + b)) 4.3)
The multiplication rule can be deduced from the addition rule and the definition of i:
cic; = ayay — byby + i(a)b, + azby) (4.4)

Division follows from multiplication:

ﬂ_a1+ib|_a|+ib1 az—ibz

C a + lbz a, + lbz a, — lbz

_ a4 + byby — i(aby — ayby) 4.5)
a% + b% '

The process of division illustrates a useful manipulation that will be used often.
The denominator was multiplied by a, — ib,, the original number with the sign of the
imaginary part reversed. The number a, — ib, is called the complex conjugate of the
original number a, + ib,. The product of a number and its complex conjugate is a
real positive number, equal to the sum of the squares of the real and imaginary parts
of the number.

EXAMPLES OF COMPLEX ARITHMETIC
(1) Let
¢ =3+ 44, c=2-T7i
Then,
qte=34+2+id-T7=5-3i
ce; =03 +4)2 - Ti)
=6+28 +i(8 —21) =34 — 13i

cl_3+4i_(3+4i)(2+7i)

¢, 2-Ti @Q-7HQ+T7)

6 —28 +i(8 +21)
4 + 49

-22 29
_ + 11—
53 53
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(2) Let
C3:—2+i, C4:1—2i
Then,
C3+C4=_'2+]+1—2l=_1_t

C3C4=(-2+i)(1 —7J)
“2+2+i+4i=0+5

I

2+ (=2 + )1 + 2i)
o 1 =2 (1-2)(+2i)

C3_

=2 - 2404
B 1+ 4

GRAPHICAL REPRESENTATION

The utility of complex numbers in planar kinematics comes from the geometrical
representation, constructed independently by Wessel, Argand (who generally gets the
credit, and for whom the representation is named), and Gauss (Courant and Robbins
1941). Note that the addition rule for complex numbers is the same as that for a two-
dimensional vector if one identifies the real and imaginary parts of the complex number
with the two orthogonal components of a two-dimensional vector. The common way
to visualize this is on the Argand diagram, on which the real part of a complex number
is plotted on the x axis of a Cartesian system and the imaginary part on the y axis.
Figure 4.1 shows an Argand diagram with €1, €2, €3, and ¢4 depicted. Any complex
variable z can be represented as a vector from the origin to the point (x,y), and any
vector in the plane can be represented as a complex variable. The plane on which the
Argand diagram is drawn is called the complex plane.

The correspondence can be written out if one lets R, Ry, R3, and R, be vectors
corresponding to the complex numbers ¢, c,, c3, and ¢4

R, = 3e, + de,
R, = 2e¢, — Te,
R; = -2¢, + e,
Ry = ¢, — 2e,

Any complex number can be written as a two-dimensional Cartesian vector, and any
two-dimensional Cartesian vector can be written as a complex number. The vector
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.C]

.C4

*Cy FIGURE 4.1 The complex plane
showing four points: ¢j, €3, €3, Cy4

skeletons introduced in Chapter 3 can be written as complex variable skeletons, and
this will be done in Chapter S and in the rest of the text.

The diagram also provides a geometric interpretation for multiplication. First,
consider the multiplication of a complex number by its complex conjugate. If z denotes
a complex variable, it is conventional to denote its complex conjugate by z*, and that
convention will be followed here. Using this notation, and the arithmetic introduced
earlier, the product

2

wr=xr+ v =r

is an expression of the Pythagorean Theorem. The product zz* is the square of the
length of a vector representing the complex variable z.

A point on the Argand diagram can be located by its Cartesian components. x and
y. It can also be defined in terms of polar coordinates r and 6. The distance from the
origin to the point is the magnitude r, and @ is a phase angle between the vector and
the x axis. measured from the x axis in a counterclockwise direction. Note that the
magnitude r is identical to the length of the equivalent vector and that 6 is just the single
Euler angle required to specify the direction of a line confined to a plane. In terms of
that notation, one can write

z = r{cos 6 + isin 8} (4.6)
using the conventional polar coordinates r and 6 defined by

x =rcosf, y = rsin @ (4.7)
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(b) /9 1\
€ —————d

FIGURE 4.2  Decomposition of a four-bar linkage into its constituent complex vectors: (a) the
vector skeleton; (b) the crank; (c) the coupler; (d) the follower; (e) the ground (frame) link.

A still more compact notation can be found by using the infinite series representa-
tion for the sine and cosine. Using these gives

1 1
cos¢9+isin0=1~—02+z€4

2!
40 ! 63 ! B+ - - 4.8
+ i - ; + 5 + ( . )
which can be seen to be equal to
. 1, 1 . 1 .
L +i0 + @)+ =@+« - +—=@)" +- - - 4.9
2! 3! n!

which is the series expansion of e, so that a complex variable z can be written in the
compact form re. The polar components r and 6 (called the magnitude and phase,
respectively) can be obtained from the Cartesian components by inverting equations
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(4.7). Unambiguous inversion of x and y to obtain r and § will be important later. Note
that r, being a length, is always positive and so can be determined unambiguously. The
cosine and sine of the angle are given by the two Equations (4.7). Neither of these for-
mulas can be inverted to find f# unambiguously by itself. The sine is symmetric with
respect to the reflection across the y axis, and the cosine is symmetric with respect to
reflection across the x axis. In equation form,

sin (w — @) = sin w cos @ — cos 7 sin § = sin 6

cos 2w — 6) = cos 2w cos 6 + sin 27 sin § = cos 6 4.10)
so that inverting either equation by itself does not provide a unique answer. The
ambiguities must be resolved using the information from both equations to identify the
appropriate quadrant. Note these operations in the following examples and in the algo-

rithms constructed to solve kinematic problems.
Finally, note that e? is the complex representation of a unit vector pointing at an
angle 6 measured counterclockwise from the x axis. Figure 4.2 shows all four links

of a four-bar linkage as complex vectors, showing the radius r and the phase angle 6
for each. Note that the angles are measured from the x axis.

EXAMPLES OF POLAR NOTATION

(1) ¢, =3 + 4i -
ot =3 +4i)3 —4i) =9+ 16 = 25

r|:5

4 0.9273
an— 1 — =
an"t6 =3 O {4.0689

and because

) 3 4
sin 6, =§, cos 6, =§

are both positive, 6, is in the first quadrant,

6, = 0.9273 rad
@ a=2-7 o
e =2 -THR+7i)=4+49 =53
ry = /53 =7.2801 7\
A -7 1.8491 “'
4 _ ! _ '
e {4.9907 ‘
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Because

sinf, < 0, cosf, >0
0, lies in the fourth quadrant,
6, = 4.9907 rad
B) 5=-2+i .
aa*=(-2+i}(-2-i)=4+1=5 ;
ry = V5 =2.2361 IR

b §
NN _{2.6179 »
@0 =25 6= 535195 ;
Because
sin §; > 0, cos §; < O,
05 lies in the second quadrant,
6; = 2.6779 rad
@) c,=1-2
ae* =0 -2 +2)=5
rs = /5 =2.2361
o AN )
- -2 2.0344 ‘
-1 = — = > N
tan 04 1’ 04 {5.1760 &
Because

sin 6, < 0, cos b, > 0

6, is in the fourth quadrant,

0, = 5.1760 rad

Because of the periodicity of the trigonometric functions, one can add or subtract
as many multiples of 27 as one chooses to or from any 6 without changing the value
of the complex variable. (Those who have studied analytic functions will realize that
things are not quite so simple, but my comment applies to planar kinematics.) To keep
things manageable and to make the inverse functions single-valued, all angles will be
supposed to lie on the half-open interval [0,2#). That is, 8 can take on any value from
zero to 2w, including zero and excluding 2.

Ty
-y
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The polar representation allows one to demonstrate additional geometric properties
of multiplication. The product of two complex variables z, and 2, can be written

212y = ryrpe O 4.11)

the magnitude of which is the product of the magnitudes of its factors and the phase
of which is the sum of the phases. In the special case in which the magnitude of z, is
unity, it is clear that multiplication is equivalent to rotation by 6, and that rotation of
a vector can be represented by multiplication in the complex plane. This will be very
useful in the analysis of mechanisms. Division can be written as the ratio of the magni-
tudes times the difference of the phases: '

2/z0 = rilrpexp i(8; — 62) (4.12)

When 0 = 7/2, ¢®® = cos § + isin@ = i. When § = 0, e = cos 6 + isin 8§

= 1. These are special unit vectors. It is useful to remember that, because i = el™?,

multiplication by i is equivalent to rotation by /2 rad in the clockwise direction. The
two complex numbers z and iz represent orthogonal vectors.

EXAMPLES OF POLAR MULTIPLICATION
AND DIVISION

¢y .
c1c; = (5)(V53) exp i(0.9273 + 4.9907)

36.4005 {cos (5.9180) + i sin (5. 9180)} /v( an e

36.4005 {0.9341 — i0.3571} /

34.0017 — 17.9986i : ;]
(Note round-off error.) J

@ Tl

5
— = —— exp i(0.9273 — 4.9907)
(%) V53

= 0.6868 {cos (2.2198) + i sin (2.2198)}
= 0.6868 {—0.6044 + i0.7967}
= —0.4151 + 0.5472i

-22 29
=~ == + i = —0.4151 + 0.5472i
53 Ti53 '
(Note that 6, — 8, = —4.0634, so that 27 was added to maintain the conventional

range of 6.)
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ROOTS AND THE QUADRATIC FORMULA

Although the need to take roots of complex numbers does not arise in kinematics, I
include this procedure here for the sake of completeness, and to allow me to expand
the quadratic formula. Consider the nth root of a complex number z. Call that root w.
The relation between z and w can be written as z = w”. That is, w is a number which,
when raised to the nth power, gives z. In simpler terms, w* w- w+ - *w = 2z

Multiplication has already been explained. One multiplies the magnitudes of the
factors and adds their phases (angles). Thus, if r,, and 6,, denote the magnitude and
phase of w, and r and 6 the magnitude and phase of z,

n

r,=r, r=4/r, (4.13a)
and
né, =0, 8, = 0/n (4.13b)

The first expression is unambiguous. The second leads to the multiple roots one expects
because of the periodicity inherent in 6.

As noted earlier, z is unchanged if 8 is increased or decreased by a multiple of 2.
Thus, I can rewrite the first of Equations (4.13b) as

nb,, =0 + 2%knx 4.14)

where k is any integer. Division by n gives

0 k
6, = — +2<—>7r (4.15)
n n
and n distinct values of 6,, can be obtained by setting k = 1,2, . . . , n — 1. These

n distinct values of §,, combine with the single unique value of r,, to give the n distinct
nth roots of z.

All the arithmetic procedures just given can be exercised by indicating how one
would write out the quadratic formula (4.2) in the case in which the coefficients a, b,
and c¢ are complex. Let

a = ag + iay, b = by + ib, ¢ =cp+ ic

where ag, a;, bg, b, cg, and c; are real numbers, the real and imaginary parts of q,
b, and c.
Begin by constructing the discriminant
dac = 4(aR + ia,)(cR + iCI) = 4(aRcR et a;c;) + 4i(aRC[ + a,cR)
Re (B2 — dac) = by — bf — 4(agcg — aje;) = dg

Im (b — 4ac) = 2bgb; — 4(agc; — ajcg) = d;
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To take the square root of the discriminant, it is necessary to convert to polar notation.
Let r3 denote the magnitude of the discriminant and 26, its phase:

ry = {d% + d?}"’

d ‘

cos 20, = i sin 26, = —;

r% rg
and

{dg + id;}" = ryexp ib,; = r cos 8, + irysin 6,
= ryexpi(B; + ) = —rycos 8; — irysin b,
are the two square roots of the discriminant.
This can be combined to give

_ (_bR + rg COS 04) + l(_bl +ry sin 90")
2(ag + ia;)

Z

Finally, the denominator can be rationalized and the results rearranged to give

(—bg + rycos 8)ag + (—=b; £ rysin 0,)a,
Re (z) =
2(ak + ai)

—(—bg + rycos 8)a; + (—b; + rysin 0,)ag
2(ak + ai)

Im (2) =

The reader will note that this result is not expressed in closed form in terms of
the original variables. Such an expression would be remarkably clumsy and would
require several notes to cover the various possibilities for 0, I have, however, out-
lined a procedure by which the values of z could be calculated. This procedure is an
algorithm. The idea of an algorithm, the basis of all numerical computation, will be
introduced formally in Chapter 5, providing a method of dealing with defined methods
of calculation too complicated to be written out in formula form.

VECTOR OPERATIONS

Two further vector operations, the scalar, inner, or dot product and the vector, outer,
or cross product, introduced in Chapter 3, will be important in the analysis of planar
mechanisms. The scalar product is given by the product of the magnitudes of the vec-
tors multiplied by the cosine of the angle between them. The vector product gives a
vector; however, simplification is possible in a planar contact. Two vectors with a
common point define a plane. For planar kinematics, this plane is the plane in which
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the mechanism lies. For two vectors represented by complex numbers Zy and z,, the
magnitudes are r; and r, and the angle between is the difference between the phases.
The vector product is perpendicular to the plane and points in the direction a right-hand
screw would travel when the first vector is rotated toward the second through the
smaller available angle. More simply, it points ‘‘up’’ or ‘‘down’’—out of or into the
page. If up with respect to the complex plane is considered to be positive and down
negative, then the vector product can be replaced by the signed scalar equal to the prod-
uct of the magnitudes times the sine of the difference between the phases.

Both these scalars can be obtained from the real and imaginary parts of a single
complex expression

zfzy = ryryexp [0, — 6,)] = ryry{cos (6, — ;) + i sin (6, — 6,)}
4.16)

The real part of this expression represents the scalar product, and the imaginary part
represents the vector product of the vector represented by z, into that represented by
z3. [The scalar product is independent of the order; the sign of the vector product
reflects whether the true three-dimensional vector points up (+) or down (—). The
scalar product commutes; the vector product does not.] The equivalence can be
expressed by the equation

i =R *R; + ie,* (R, X Ry) 4.17a)
This can be inverted to give

R, * R; = Re(z{z;)
e, * (R; X Ry) = Im(z¥z,) (4.17b)

as an alternate connection between the vector and complex representations.

DIFFERENTIATION

It will be necessary to differentiate complex numbers when they are used to define
mechanisms, in order to find the velocity and acceleration of the members of the mech-
anism. Differentiation is obvious and follows from what one already knows. The only
thing necessary to remember is that i is a constant, so that the derivatives of i of any
order with respect to anything are all zero. Thus,

dz dx [dy
— == 4+ — .
dr dt l<dt> (4.18)
9
or =

dz dar\ . dagy . dr dagy .
— =1 i ) i i - Ty — i
7 <dt>e + n<dt>e <dt + zrdt>e 4.19)
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The reader should confirm that

dz |d*r _drdb <d9>2 d2 | .
== 42— — —rl= ) +ir—|e® 4.20
dr? [dﬂ da \a) T ar |° @.20)
EXERCISES
1. Add the following pairs of complex numbers and express the sums in polar
notation:
3ei7r + Seir/3 7812466i + 663.33i
2072 4 2072 o0 + e

30680 4 Ge3.65i
2. Divide the following pairs of complex numbers, and express the results in Car-
tesian and polar notation:
(1 +iy3 =7 (6 + 3i)/(6 — 3i)
6 + )3 +1i) (4 — 12i)/(6i)
2+ 601 - i)

3. For the following vectors a, b, convert to complex notation and find a b,a X b,
b X a in complex notation:

_ 3 b
3e, + Te, e, — e,

2e, + Ge, 6e, — 2e,
€ —3e, — 3e,
—e, e,

e + e 3e, + 3e,

4. Refer to text Figure 1.7. Let d be the origin, and let the positive x axis point from
d to a. Find the four complex numbers representing the vise-grip links. Express
in both Cartesian and polar forms.

5. What are the five distinct values of (—7)3?

6. The complex variable z points in the direction defined by its phase 6. In what direc-
tion do dz/dt and d?z/dt? point?

7. Write a set of subprograms, using the computer language of your choice, to add,
subtract, multiply, and divide complex numbers, assuming no direct support from
complex arithmetic. Denote complex variables to two-element arrays in the
programs.

7 8. Write a computer program to calculate the quadratic formula for complex coeffi-
cients, assuming no support from complex arithmetic.
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9. Youknow thate, X e, = e, and thate, X e, = —e,. If the vector a corresponds
to the complex number z, how would you write e, X a using complex notation?
The result should contain only z and other complex numbers in polar form.

hat
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Chapter 5

Position Analysis
of Bar Linkages

THE LOOP-CLOSURE EQUATION
FOR FOUR-LINK MECHANISMS

The basic elements of kinematic analysis and the substructure required for kinematic
synthesis can be developed by an exploration of two important four-link mechanisms,
the four-bar and the slider crank. Figure 5.1 shows a typical four-bar linkage, its vector
skeleton, and its complex variable representation. Figure 5.2 shows the same sequence
for a slider-crank mechanism. Note that the simplification to three links has not been
made. Using four complex variables (not equivalent to the four links) allows a unified
treatment of the two linkages in terms of general solutions to four complex-variable
problems.

The fundamental relation from which this general approach is developed is the
loop-closure equation. In terms of complex variables,

1+t 3 +z4=0 a1

The statement is a tautology. It says that if one walks around a closed loop, one gets
back to where one started. Equation (5.1), written in terms of complex variables, is
complex and can be separated into two real equations by taking its real and imaginary
parts. The loop-closure equation represents, compactly, two independent algebraic
equations, and one would hope to be able to solve it for two unknowns. It is not a linear
equation, however, so that there is no guarantee of a unique solution.

The variables in the loop-closure equation are the four link lengths r\-r4 and the
four link angles 8,-6 . For the four-bar linkage, the four lengths are known, and the
choice of coordinate system has fixed 6, = «. There remain three unknowns for the
two equations. This is to be expected in a single-degree-of-freedom system and, thus,
one independent variable needs to be specified. Usually, this is the crank angle 8,.
The slider crank has also been described by a four-vector skeleton. The unknowns are
rs, 0, and 65, reflecting that this is also a single-degree-of-freedom problem. One
can specify 8, as for the four-bar linkage or, if the mechanism is to represent an inter-
nal combustion engine, r, could be specified.

61




62  Analysis

(b) (b)

Z3

22

Z2

Zy Z4
(©) (©

FIGURE 5.1  Three stages in the abstrac- FIGURE 5.2 Three stages in the abstrac-
tion of a four-bar linkage: (a) the physical tion of a slider-crank mechanism: (a) the
linkage [after Reuleaux (1876)]; (b) the vector physical linkage; (b) the vector skeleton; (c)
skeleton; (c) the complex-variable representa- the complex-variable representation.

tion.

These two simple model problems demand a solution of the loop-closure equation
for either two angles or one length and one angle. For the sake of completeness, the
solution for two lengths will also be given. In all cases, it will be supposed that z; and
2z, are known.

DIRECT METHODS OF SOLUTION
Case I: Two Lengths Unknown
Let 3 and r4 be unknown. Write the loop-closure equation in the form
r,eml + r2e"02 + r;;;e"‘93 + r4e“’4 =0 5.2)
Multiply the loop-closure equation by e ~*%, giving

reii-0y 4 ryet@2=03) 4 ry + rqef®0) = o (5.3)
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22

Z)

(@) (b)

FIGURE 5.3  The two ambiguous positions of the coupler and follower of a four-bar linkage:
(a) z3 and z4 parallel; (b) z3 and z4 antiparallel.

Taking the imaginary part of this equation eliminates r3, giving a simple equation for
ry:

r4sin (04 - 03) + rzsin (02 - 03) + rISin (0| - 63) =0 (54)
Repeating the process using ¢ ‘% leads to a similar expression for r;:
r3sin (93 - 94' + rzsin (92 - 94) + r sin(()l - 04) =0 (55)

These expressions break down when sin(6; — 6,) = 0. Figure 5.3 shows the two
cases for which this can take place, when z; and z,4 are parallel or antiparallel. In both
cases, the real part of Equation (5.3) gives the distance between points B and D, r; +
rqy when 68, = 05 and ry — r; when 6, = 65 + 7.

The case of two unknown lengths is easy, easier than it appears in the analysis just
demonstrated. The loop-closure equations (the real and imaginary parts of the complex
loop-closure equations) are linear in the unknowns ry and r4. I have gone through the
apparent ‘‘tricks’’ because I will need them for the other cases. I can obtain the same
result simply by writing the real and imaginary parts of Equation (5.2). These are two
linear equations for r; and r,4, and they can be solved easily. In matrix form, the two
real equations are:

cos 65 cos 04 rs) rycos 8, + rycos 6, (5.6)
sin 65 sin 04 ra rysin 6, + r, sin 6, '
These can be solved to give
3] _ 1 sinf, — cos 04 ricos 8, + rpcos 6, 5.7)
ra sin(f, — 63) ( —sinf;  cos 83 ry sin @; + r,sin 6, ’
which can be seen to be the same as Equations (5.4) and (5.5), and the singularity at

65 = 6, is seen to be a vanishing determinant in a pair of linear equations. [Recall
that cos 65 sin 84 — sin 65 cos 8, = sin(f4 — 65).]
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FIGURE 5.4 A sketch of the
linkage found in Example 5.1.

EXAMPLE 5.1
Let
r, =4, r, =2
6, =, 0, = =/3, 053 = #/10, 04 = 4x/3
then
= - {2 sin<—7[ - l) + 4 sin< - 1>}/sin<ﬁ - l>
4= 310 "0 310
1.3383 + 1.2361
= -——— = 3 8476
T4 (—0.6691)
and
4
r3 = — {2 sm<§ - ?W> + 4 sm<7r - 4?1r>z/sin<% - ?ﬂ’>
—3.4641
= - ——F— = 5.1773 5.8
"3 0.6691 7 >-8)

Figure 5.4 shows the calculated linkage.

Case ll: One Length and One Angle Unknown

lla: Both on the Same Link

This case is trivial. Let r; and 6 be the unknowns. This is equivalent to z; being
unknown, and that can be found directly from the loop-closure equation

23 = ~ (2t 25+ 24)
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lib: r4 and 63 Unknown

Multiplication by e ~/%4 followed by taking the imaginary part, eliminates the unknown
length r,. This gives an equation for the sine of the difference between 65 and 04:

rs Sin(03 - 04) = —r Sin(02 - 94) i sin(0| - 04) (59)

The sine of an angle does not determine that angle uniquely, even when angles are
restricted to between zero and 2. For sin § > 0, there are two possible values of 6,
symmetric with respect to § = /2. For sin § < 0, there are also two values, sym-
metric with respect to § = 3#/2. Further information, in the form of the sign of cos 6,
is needed to resolve this ambiguity.

The problem is further complicated by the mechanics of taking inverse trigono-
metric functions. Scientific calculators typically can invert all the trigonometric (and
hyperbolic) functions. Many computer languages support only the inverse tangent. The
programmer is expected to make use of simple trigonometric identities to generate the
other functions. This will be left as an exercise for the reader.

For the sake of convenience, let sin(f; — 84) = arg, arg being the right-hand
side of Equation (5.9) divided by r3. Multiply the loop-closure equation by e =% and
take the imaginary part. Then,

ryarg = r, sin(@, — 63) + r; sin(9, — 63) (5.10)
Now,
6, — 05 = 0;-(_94 +8) —03=0, — 04— (63— 04
and

6, — 03 = (0, — 0y — (03 — 04)
so that the sines on the right-hand side can be written out, as, for example,

Sil’l(02 - 03)

sin[07_ - 04 - (03 - 04)]

It

sin(@, — 84) cos(@; — 84) — cos(f, — 0,) sin(f3 — 64)
G110

If sin(f; — 0,4) = arg, then cos(f3 — 6,) = +[1 — (arg)?]” and a series of substi-
tutions leads to an ambiguous expression for ry:

Fo = —rycos(@ — 04 — rycos(6, — 64)

+ [y sin(@, — 84) + rysin(@, — 8))1(1 — arg?)*/arg (5.12)

and, because r, must be positive, a unique choice of sign can be made. At this point,
without inverting the trigonometric functions, both sin(f; — 64) and cos(f; — 04)
are known, so that §; — 6, is specified uniquely (in the interval zero to 2m).
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EXAMPLE 5.2

Let
r =4, r2=2, f3=5.l773
0, =, 6, =x/3, 0, =4x/3
then
0, —0,=—m sin(@, — 0,) =0, cos(G, — 04) = —1
6y — 0, = —w/3; sin@, — 8,) = —/3/2, cos(d, — 6,) = 0.5
and

5.1773 sin(6; — 0,) = 2/3

sin(6@; — 0,) = 0.6691 = ar
g

0.7330

re = 4(1/2) + 2(-1)

+ [4(=/3/2 + 2(0)][1 — (0.6691)2]%/1.6691 (5.13b)
=0 + (—3.8476)
re = 3.8476 (5.14)

The lower sign is correct, so that sin(§; — 6,) > 0 and cos(@; — 84) < 0, and
(63 — 64) is in the second quadrant. Thus,

03 = 6.5974 — 0.3142 (=7/10)

Case lll: Two Angles Unknown
Let 63 and 8, be the unknown angles. Taking the loop-closure equation (5.2)
rle""l + rze”’2 + ry;‘“’3 + r4eio4 =0 (5.15)
and combining the first two terms to simplify it gives
rre”’T + r3e”’3 + r4ei”4 =90 (5.16)

where the subscript T indicates that z; = rpe'®r = Z; + Z;. (These can be found
directly in a system using complex variables. A method without using complex vari-
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ables will be demonstrated in Example 5.3. It is easy to implement in a computer
language that does not support complex arithmetic.) Rearranging the simplified loop-
closure equation to isolate z,,

rrelft + r3e'93 = —rue'fs (5.17)
and multiplying each side by its complex conjugate gives
rT2 + r32 + 2"7"'3 005(03 - 6’[) = r42 (518)
where the identity

e'? + e~ =2 cos @ (5.19)

was used. Equation (5.18) defines cos(§; — 67), and repeating the derivation or inter-
changing 3 and 4 gives a similar relation for cos(8, — 67):

re2 4+ rg2 + 2rprycos(@y — 07) = ri? (5.20)

Equations (5.18) and (5.20) can be recognized as the law of cosines when suitably
rewritten; for example,

rr? + rgd — 2rprgcos(@y — 0p + w) = ry?

Both relations have the ambiguity associated with the inverse cosine. This apparently
suggests the existence of four solutions, two each for 3 — 67 and 6, — 6. These
cannot be combined arbitrarily, however. To show this, multiply Equation (5.17) by
e %7, and take the imaginary part. This gives

rj Sin(03 - 07‘) + ry Sin(04 - 0’[) =0 (521)
which shows that sin(8; — 6) and sin(84 — 67) must have opposite signs. The two

sets of solutions represent a reflection of the third and fourth links across the line z7.
To derive them, I will assume that the inverse cosine is available and let

argy = {rg? — re? — ri?}/Q2ryry) (5.22a)
argy = {ry2 — rp? — rg?}/Q2rrry) (5.22b)

The inverse cosine is used to find C; = cos‘l(arg ;). Under the usual inversion
schemes, C; € [0,7], and the two valid pairs for 83 and 8, are

03 = 07- + C}, 04 = 07‘ + 27 — C4 (5233)

03 = BT + 27 — C3, 04 = 01’ + C4 (523b)
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EXAMPLE 5.3

Let
ro=4, r, =2, r; = 5.1777, rs = 3.8476

0, =, 0, = /3

then

Ir=zy +t 25 = 3.4641 ¢i(2.6180)

(This is a direct calculation using a hand calculator with complex arithmetic. Without
complex arithmetic, this proceeds from the law of cosines. First,

rr?2 =r2 + r?2 + 2rirycos(8, — 6,)

= 3.4641
and then

rycos 6, + ry cos 6, 2.6180

Or = = —0.8 - 0r=
cosvr rr 660 = 07 {3.6652
. rysin @, + r, sin 8, 0.5236

07 = = —0.5000 — 6, =
s br rr T {2.6180

and the common value is 2.6180, in agreement with the direct calculation.)
arg; = —0.6691 —» C; = 2.3038
argy = 0 —> C, = 1.5708 (m/2)

so that

6; = 6.5974 —» 0.3142, 6, = 4.1888

or

63 =4.9218, 6, =7.3304 — 1.0472

Figure 5.5 shows the upper set in solid lines and the lower in dashed lines.
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FIGURE 5.5 A sketch of the
two solutions to Example 5.3.

ALGORITHMS FOR COMPUTATION

Most problems in kinematics cannot be reduced to a single formula, yet well-defined
procedures for generating solutions are possible. Such procedures are called algo-
rithms, and digital computers are ideally suited to following algorithms. Indeed, com-
puter programs are sets of algorithms linked by control statements.

Specific computer programs, in one language or another, do not belong in this
text. The important issue is the idea of computation, the following of a procedure, or
algorithm, which leads reliably to the correct answer. I will use ‘‘generic’’ programs
written in a language resembling computer languages but without the complicated syn-
tax requirements or, I hope, the use of unclear words. The computer-literate student
should be able to construct actual programs in the language of choice from the models
here and later in the text. The five programs that follow are two simple complex-
variable manipulation codes, followed by the formalization of the procedures outlined
for four-link position analysis.

PROGRAM 5.1:
ADDITION OF TWO COMPLEX NUMBERS

enter (xy, yy and x,, y2);
X3 =x; +x3;  y3=y ty
print (x3, y3);
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PROGRAM 5.2:

ADDITION OF TWO COMPLEX NUMBERS IN POLAR FORM

enter

if
if
if
if

print

PROGRAM 5.3:

(ry, 8, and r5, 6,).
rr = sqrt{ri? + ry> + 2ryry cos(8, — 6,)};
cr = [rycos 8, + r, cos 0,)/ry;

Sr = [r, sin91 + ry sin02]/rT;

011 = sin~lsy; 07, = m — sin~lsy;
01, = cos™'cr; 07 =27 — cos™lep;
071 = 071 then br=0r;

071 = 072 then 0r = Ors

072 =07,  then Or = 07;

072 = 0ro  then 0r = Or2;

(rr, 07);

FOUR-BAR ANALYSIS, TWO LINK LENGTHS UNKNOWN

enter

print

PROGRAM 5.4:

(ri, ra, 0y, 65, 03, 04);

Sq3 = sin(l4 — 03); 593 = sin(6, — 05);
s13 = sin(@) — 63); 514 = sin(@, — 0,);
24 = sin(f, — 0,);
r3 = + [ry824 + 1r1514)/543;
re = —lrasz + risplisa;

(r3, ry);

FOUR-BAR ANALYSIS, ONE LENGTH AND
ONE ANGLE UNKNOWN

enter

(rl’ ra, 3, 01, 02’ 04),

S14 = sin(0; — 84); $24 = sin(@; — 0y);
S34 = —[r2sy4 + rys14l/rs;

cla = cos(; — 04);  co4 = cos(8, — 0y);
ci = [1 — 53424173

Tqg = —riCiqg =~ IaCyq — F3Cyy,

rg = —F|Cyy — IpCy + r3C;
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if rgy =20 then ryg = rg;

if rg =0 then rqs = rgand c33 = —C34;

if s34 =0 then 03 =604 + cos! (c34);

if s <0 then 03 =04 + 21 — cos™! (c34);
if ;<0 put 63 = 03 + 27, repeat;

if 0; > 27 put 0; = 0; — 2m; repeat;

print (r4’ 03)a

PROGRAM 5.5:
FOUR-BAR ANALYSIS, TWO ANGLES UNKNOWN

enter  (r(, ry, I3, rs, 0y, 0,);
7 =rel; oz =rnelt;, 7=z, + 2y
rr = sqrt{zz*}; 67 = Im{log[z/r]};
cy = {rid = rp? — ri?}Q2rrry);
cqg = {ryi? — re? = rd}Qrrry);
630 =cos ey + 07 04, =27 — cos ey + Op
O35 =2 —cos ey + 0 Bu =cos oy + 05

print (63,4, 044 and 035, 04p;)

Note that this program assumes that the machine is capable of working directly with
complex variables. If this is not the case, one can insert the second program in the
appropriate spot in the program.

COUPLER CURVES

The motion of any rigid body can be decomposed into a rotation and a translation. In
planar kinematics, these motions give the three degrees of freedom discussed earlier.
If a link in a bar linkage is pinned to the frame, that link cannot translate with respect
to the frame. Such a link rotates, and any point on such a link traces a circular arc in
the plane. Other links in a bar linkage rotate about a point that is translating. Points
on such a link trace closed noncircular curves. These curves are called coupler curves.
The archetypal coupler curve is that traced by an arbitrary point on the coupler of a
four-bar linkage. These have been studied exhaustively. A catalog of coupler curves
has been published by Hrones and Nelson (1951).

The problem of designing a linkage to generate a specified motion, called syn-
thesis, and discussed in detail in Chapters 8 and 9, is linked to the problem of coupler
curves. It is useful to discuss coupler curves from an analytic viewpoint before moving
on to study their synthesis.
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FIGURE 5.6 A sketch of a four-bar linkage
showing the variables necessary for the analysis
and synthesis of coupler curves. Note that w,
and w4 always bear a fixed relation to the basic
z coupler variable z3.

Figure 5.6 shows a four-bar linkage with an arbitrary point P attached to the
coupler. Two additional vectors have been added to the usual four-bar linkage diagram.
These vectors, w, and wy, are attached to the coupler, denoted in complex variable
space, as usual, by z3. Because w, and w, are attached to the coupler, they are pro-
portional to z3. The proportionality constant is complex, representing both a change
in length and a rotation. During the motion of the linkage, the position of P (with
respect to the crank origin, say) can be represented by either of two sums: z, + w,
or —(z; + z4 + wy). Either of these can be generated trivially once the position of
23 has been found, using Program 5.5. To trace coupler curves, one need merely add
a step that gives w, in terms of z; and then a step that traces out the sum z, + w,.

The two sums z, + w, and —(z4 + w,) are called dyads. The first is the left-
hand dyad and the second is the right-hand dyad. Either dyad traces out the coupler
curve, and use will be made of this and of this language in Chapter 7, when synthesis
is approached systematically. Note that the standard dyad notation omits the frame link.

Program 5.6 will calculate coupler curves. In this program, g; is a complex num-
ber such that w, = ¢323.

PROGRAM 5.6:
COUPLER CURVES

enter  (ry, ry, rs, rq, 0))
enter (g3)
enter  (6,, Af,)
n=20
begin loop
n=n+1
call program 5.5(r|, ry, r3, ry, 0,, 05, 03, 04)
z3 = ryexp(if;)
Wy = 4323
X, = Re(w3);  y, = Im(wy)
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print (6,, x,, y,)
if nA8, > 27 goto end
6, =0, + Al,
repeat the loop
end

A coupler curve is typically generated by a Grashof linkage for which the crank
can make a complete rotation. As an example, consider the crank-rocker mechanism
abstracted from the motorcycle foot brake, for which

r, = 0.162, r; = 0.986, rs = 0.204

in dimensionless units, and look at the motion of different points on the coupler, link
3, as the crank makes a complete rotation. Figure 5.7a shows the mechanism redrawn
in its standard position (a redrawing of Figure 1.17a). Figure 5.7b shows it redrawn
once again in a reassembled position, more like the crank-rocker mechanisms shown
earlier. Figure 5.7c shows a number of linkage positions. Four coupler points, P,
P,, P3, and P, are shown. These lie on the line joining B and C, so that all the w;
vectors are parallel to z5:

(W2)l = 0-1137 (WZ)Z = 0.2523, (W2)3 = 0.513, (W2)4 = 0.9Z3

77@7'D

zy

(b)

©

FIGURE 5.7  The behavior of a mechanism based on the motorcycle foot brake of Chapter 1:
(a) abstraction of the mechanism, showing four coupler points Py through P (b) the mechanism
reassembled in a standard crank-rocker orientation; (c) the mechanism in several positions
throughout its cycle.
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FIGURE 5.8 Coupler curves for the linkage shown in Figure 5.7b: (a) the coupler curve
corresponding to Py; (b) the coupler curve corresponding to Py, (c) the coupler curve corre-
sponding to P3; (d) the coupler curve corresponding to Py.

Figures 5.8a-5.8d show the four coupler curves, calculated using a specific realization
of Program 5.6. The results are in agreement with intuition. When the coupler point
is near the crank, its motion is nearly circular, nearly the motion of the crank. At the
other end, the motion of the coupler point is nearly an arc, nearly the motion of the
follower. In between, the motion is in between. All these are simple closed curves, and
synthesized coupler curves for four-bar linkages will always be simple closed curves.
For fancier curves, fancier linkages are necessary. I will look briefly at coupler curves
for six-bar linkages later in this chapter. This will require a more general approach than
that taken to date, an approach based on indirect, iterative solution methods, described
in the next section.

INDIRECT METHODS OF SOLUTION

The examples and techniques presented so far are somewhat unrealistic and limited.
Only four-link mechanisms have been analyzed. The analysis has been direct and
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sufficiently compact to be addressed by hand calculation. Practical problems are not
so simple. Practical problems are solved using commercial software packages. How-
ever, while no carpenter need be able to manufacture a saw, no good carpenter fails
to understand saws. One need not be able to manufacture the tools of one’s trade, but
one must understand them.

This is not the place to dissect commercial code, even if that were possible. It is
however, the place in which some of the fundamental mathematics and numerical anal-
ysis that form the bases of these codes should be presented. To that end, I include mate-
rial more commonly found in textbooks on numerical analysis, so that these tools can
be understood.

For practical complicated problems, exact direct solutions are either impossible or
impossibly lengthy. It is easier to proceed by a method of successive approximations.
One of the most common of these is based on the Newton-Raphson scheme for finding
approximations to the zeros of a function. For a thorough discussion of the method,
the reader is referred to any good numerical analysis text, such as that by Carnahan
et al. (1969). The discussion here is compact but self-contained.

Consider a function F for which it is desired to find X such that F(X) = 0. Imagine
that an approximate value of X, say X, is available. (Typically, one guesses this
value using whatever knowledge of the function is available. For linkages, where
several angles must be guessed, a rough sketch may be helpful.) Then F(Xo) is in
some sense small, near zero, and X, — X is also small. Let the true value of X =
Xo + AX. If X, is a good guess, the magnitude of AX will be small compared to that
of X,. The function F(X) that is to vanish can be written in terms of a Taylor series
valid in a neighborhood of X,

dF(X,) .
FXy + AX) = 0 = F(Xo) + e AX + higher-order terms (5.24)

This equation can be ‘‘solved”’ for AX, giving an approximate correction term

dF(X"))V' (5.25)

AX = —F(X

(Xo) < X
Adding this to X, gives an improved estimate for the root, X,. The process can then
be repeated indefinitely. If the successive corrections approach zero, this method will
converge to the correct value of X. The general step, amenable to computation, can
be written

F(X,)

Xpe1 = X, —
n+1 n F'(X,,)

(5.26)

where the prime has been introduced to denote derivative with respect to argument.
Equation (5.26) is an algorithm. It can be followed more easily in pseudocode, and Pro-
gram 5.7 is a representation of this algorithm in pseudocode. The functions f(x) and
f'(x) are auxiliary functions that need to be supplied to the main program.
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PROGRAM 5.7:
(ONE-DIMENSIONAL) NEWTON-RAPHSON ROOT FINDER

function f(x)
function f'(x)
guess (x)
begin loop
delta = —f(x)/f'(x)
if |delta] < limit goto end
x = x + delta
repeat loop
end

This scheme will not always work. It requires a sufficiently good initial guess; the
value of X, must be close enough to the correct result. A clearly unworkable initial
guess is one for which the derivative vanishes, making the iteration routine singular.
A complete discussion is out of place here. The interested reader is referred to the text
by Carnahan et al. cited earlier.

As an example, consider the function x2 — 11x + 28, which has the two roots 4
and 7. The iteration relation is

X1 =X, — [X,2 - 11X, + 28)/[2X,, — 11] .27
and two sequences are:
5,3.0000, 3.8000, 3.9882, 4.0000, . . .
6,8.0000, 7.2000, 7.0118, 7.0000, . . .

both displaying rapid convergence.

To apply these ideas to the linkage problems in this chapter and to the more com-
plicated linkage problems that will arise, it is necessary to extend this to more than one
independent variable. It happens that the two-variable case contains all the essentials
of the n-variable case, and so I will explore the two-variable case in some detail. I will
then construct the routines necessary to solve the three nontrivial cases explored in this
chapter.

If there are two variables to be determined, there must be two relations that these

Fi(x;,x) =0
Folx;, x2) =0 (5.28)

Again, an initial guess is required to get the problem started. Let that guess be X,, X,
and let

X = X] + 6], Xy = Xz + 62 (529)
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Both Fy and F; can be expanded in a two-variable Taylor series, and the same small-
ness hypotheses can be made concerning 6, and 6,. Thus,

m - e
FyiFaz) (62 F,
where the comma subscript notation denotes the partial derivative, That is,

dF,
F,, = o (5.31)

axj'

Equation (5.30) can be inverted to find the &s, provided that the Jacobean
J=F Fyy — Fi2F;, (5.32)

is not equal to zero. That result is

6p _ —10 Faa — Fyy F,
{52} J {_Fg.x FI.I} {FZ} ©-33)

An iteration routine can be constructed using this. The general step is

XDns1 = Xa + G
(XZ)n+l = (XZ)n + (6 2)n (534)
with the 8s calculated from Equation (5.33).
For the simple four-link mechanism problems that we have solved exactly here,

the same pair of equations serve for F| and F,: the real and imaginary parts of Equa-
tion (5.2). For case 1, let x; = r3 and x; = ry4, so that the matrix elements are

F,, =cosf8;, F,=cosf,
FZ,l = sin 03, Fz‘z = sin 04 (535)
and the Jacobean is J = sin(84 — 63).

For the nontrivial second case, case IIb, let x, = r4 and x, = 63. The matrix
elements become

Fl'l = COS 04, F1,2 = -nr cos 63

F?..l = sin 04, F2~2 =Tr3 S.lﬂ 03 (536)
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and the Jacobean becomes.l=_¥r3c9s’(04 — 63). Finally, for case III, let x; = @; and
X, = 0,4, making the matrix elements

Fiy = —rysinf;, F,= —rysinb,
F2,l = rj Cos 03, Fz‘z = r4 COS 04 (537)

and the Jacobean, J = r3ry sin(@, — 65).
It is interesting to compare the program necessary to do one of these with the

corresponding code for the direct solution. The hardest code for direct solution is that
for two angles, case III. The following code will do that in a Newton-Raphson sense.

PROGRAM 5.8:
FOUR-BAR ANALYSIS, TWO ANGLES UNKNOWN

enter (r1, ry, 13, 14, 04, 03);
guess 03, 04;
begin loop

J = ryry Sin(04 - 03),
if J = 0 goto end

D3 = —ru[ry cos(@, — 8,) + r, cos(@, — 05)
+ rs COS(04 - 03) + r4]/J,

D4 = ry[ry cos(®; — 6;) + r, cos(fy — 0,)
+ ry + Iy COS(03 - 94)]/.,,

if [D3] < limit and |D4| < limit goto end
0; =05 + D3;

0, =04 + D4,

repeat the loop

end;

The Newton-Raphson technique is no more restricted to two unknowns than it is
to one. Mechanisms of any degree of complexity can be analyzed. To illustrate this,
I will run through the analysis of the six-bar Stephenson II linkage shown in Figure
2.7d. I chose this as the *‘most difficult’’ six-bar linkage, most difficult in the sense
that its grounded loop is a five-bar linkage, and the techniques developed for four-bar
linkages cannot be applied automatically. Note also that once there are more than two
constraints, the “‘trick’’ of solving the two equations defining the corrections symbol-
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FIGURE 5.9 Definition sketch for a
Stephenson I linkage. The complex num-
bers q3, qs, and q¢ are constants (see
text).

ically is no longer available. The set of equations determining the correction vector
must be solved anew at each iteration.

Begin by redrawing the skeleton of the linkage in Figure 5.9. Instead of one com-
plex loop-closure equation leading to two real constraint equations, there are two inde-
pendent complex loop-closure equations leading to four real constraint equations. One
choice of two independent equations is

O+ttt 6=0 (5.38a)

q323 + 25 + q626 — 24 = 0 (5.38b)

where g3 = a; exp(ias) and gg = ag exp(iag) are the two complex constants relat-

-ing different edges of links 3 and 6, as shown in Figure 5.9.

As in the four-bar example, all the lengths are specified, as is the frame angle
(=m). Both g5 and g¢ are consequences of the linkage geometry, hence known and
constant. Unknown are the remaining five angles—five unknowns to be determined
from four equations. Again, it is convenient to suppose that the crank angle is given
and to determine the four remaining angles as a function of the crank angle.

The four real constraint equations are

F=-r+ récds()z + rycos 03 + rycos 8y + regcos g =0
Fy =rysinf, + rysinf; + rysinf, + rgsinfg =0
Fy = ayrycos(f; + a3) + rscos 0s + agrg cos(fg + ag) — rqcos 6, =0
F, = asrysin(@; + a3) + rssin fs + agre sin(f@g + ag) — rasinfy =0

(5.39)
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aF 3F
F;(0,, 04, 65, 6 —0—F0,0,0,0 + 660 + 66
(03, 04, 85, O¢) (03, 04, 05, 6¢) 380 4604
aF dF;
+ 6 + 80— + - 4
05305 506806 (5.40)

where the caret denotes the initial and subsequent guesses. Each Taylor series is
truncated at the two-term level shown earlier, leaving a set of of four cou coupled linear
algebraic equations for the correction terms. These are most conveniently written in
matrix form as

Fi3F\4F sF ¢ 505 F,
Fy3 Fy4F,5 F 66 F
23 F24 Fa5 Fp s _ _ | F, (5.41)
F33F34F35F3 605 F;
Fa3F44F45F46 606 F,

where the comma subscript notation is as defined in Equation (5.31), and the coeffi-
cients for the Taylor series matrix are

F1,3 = =r;3 sin 03, Fl,4 = —ry sin 94, F1‘5 = 0, F[,6 = —rg sin 06
F2‘3 = rj3 COs 03, F2'4 = r4 COS 04, F2,5 = O, F2,6 = r¢ COS 06
F3’3 = —ajsrs Sin(03 + (X3), F3‘4 =Ts sin 04
. . 5.42
F3'5 = —rsSsin 05, F3,6 = —Qagle Sll'l(96 + (16) ( )

Fs3 = asr3cos(@3 + as), Fu4 =r4cosfy

F45 = rscos 85, Fu6 = —agre cos(@g + ag)

The matrix equation (5.41) is the six-bar equivalent of Equation (5.30). | Its inver-
sion is not so simple, and it is not convenient to construct an algebraic representatlon
for the correction terms. The iteration scheme will be as follows:

1. Make an initial guess. Bt

2. Evaluate the matrix elements on the left-hand side of Equations (5.36), and the vec-

tor elements on the right-hand side of Equation (5.41).

Solve Equation (5.41) numerically.

4. If all four correction terms are not sufficiently small, update the guesses for the
angles, and repeat the process.

w

The third step is time-consuming. In practice, one would use a commercial code
to solve the matrix equation. Students who wish to implement their own programs
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FIGURE 5.10  The coupler curve for a six-bar linkage: (a) the linkage r; = 300, r; = 60,
r3 = 173.1, 14 = 173.1, rs = 231.6, 15 = 60; (b) motion of point P.

should take a look at the routines in Press et al. (1986). The following example makes
use of these routines. T

Figure 5.10a shows a Stephenson II linkage, and Figure 5.10b shows the motion
of point P while the crank moves between zero and 90°. The crank is not free to make
a complete rotation. If one wanted to drive this with a rotating prime mover, it would
be necessary to add a crank-rocker mechanism driving the crank of the six-bar system.
The result would be an eight-bar linkage containing four ternary links (the frame and
link 2 of the six-bar linkage are now ternary) and four binary links: the new crank and
coupler and links 4 and 5 of the original six-bar linkage.

While the Press et al. code is excellent, and well described in that text, it is useful
to have a short discussion of the solution of matrix equations in this text, particularly
since this method is extendable to larger systems. The analysis of a six-bar linkage
requires the solution of a fourth-order system; that of an eight-bar linkage requires the
solution of a sixth-order system; that of a ten-bar lmlagé }éiiulres the solution of an
eighth-order system, and so forth. The situation is much more complicated for syn-
thesis, which will be discussed in Chapters 8 and 9.

In general, imagine that there are n variables and n relations containing these
variables—n constraints. The rflétrrix equation for the general correction vector  can
be written o

{Fij} {8} = —{F} (5.43)

where {F;;} is an n X n matrix and {§;} and {F;} are 1 X n matrices (column vec-
tors). The obvious extension of the iteration scheme given by Equation (5.32) is

{Xi}n+l = {Xi}n + {‘Si}n (544)
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where all the terms are column vectors. The solution of the linear equation (5.43) can
e time-consuming for large systems. For matrices for which most of the elements are
nonzero, the method of choice is Gaussian elimination, discussed as follows.

Gaussian elimination is the name given to the systematic triangularization of the
matrix of the coefficients of a set of linear equations and to the necessary simultaneous
modification of the ‘‘right-hand side.’’ The discussion here owes much to that in Strang
(1986). That reference should be read in parallel with the Press et al. reference already
given.

Consider as an example the general matrix problem typified by Equation (5.43).
In the interest of neatness, let the matrix {F;;} be replaced by A, and denote the
elements of A by a,;. Similarly, replace the correction vector by x, with elements x;,
and the function matrix —{F;} by b, with elements b;, so that the equation to be
solved is simply

Ax = b (5.45)
Written out in ‘‘longhand,’’ this is
N N N
r‘111 ap ttoap r)fl rbl
azy Gy " a4y, X2 b,

4: | H(=J( (5.46)

\anl 7 annJ &X"J \bn_)

How can this be solved?
First, consider the following specific example:

8x) + 4xy + 4x3 + 2x, = 1 (5.47a)
6x; + xy +3x3 + S5x4=2 (5.47b)

X +4x; +Tx, =3 (5.47c¢)
2x; 4+ 2x; + 3x3 + 6x4 = 4 (5.474d)

I can eliminate x, from Equations (5.47b)~(5.47d) in the following way:

1. Multiply Equation (5.47a) by 6/8 and subtract from Equation (5.47b).
2. Multiply Equation (5.47a) by 1/8 and subtract from Equation (5.47c¢).
3. Multiply Equation (5.47a) by 2/8 and subtract from Equation (5.47d).

The set of equations (5.47) is now:
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8x; + 4x, + 4x; + 2x, = 1 (5.48a)
—2x, + (A2)xy = 5/4 (5.48b)

—(112)x, + (1Dx3 + Q274x, = 23/8 (5.48¢)

X, + 2x3 +  (1/2)xq4 = 15/4 (5.48d)

and I can eliminate x, from Equation (5.48¢) and (5.48d) in a similar fashion:

1. Multiply Equation (5.48b) by (1/2)/2 and subtract from Equation (5.48c).
2. Multiply Equation (5.48b) by 1/(—2) and subtract from Equation (5.48d).

These operations reduce the set (5.48) to a still simpler set:

8x; + 4x, + 4x; + 2x4 = 1 (5.49a)
-2x; + (72)xy = 5/4 (5.49b)

(772)x3 + (47/8)x, = 41/16 (5.49¢)

2x3 + (29/4)x, = 35/8 (5.49d)

which can be reduced to a still simpler set in the single operation: multiply Equation
(5.49¢) by 2/(7/2) and subtract from Equation (5.49d). The final equations to be solved
are:

8x, + 4x, + 4x3 + 2x, = 1 (5.50a)
—2x, + (1/12)x4 = 5/4 (5.50b)

T12)xy + (47/8)x, = 41/16 (5.50¢)

(109/28)x, = 163/56 (5.50d)

and these can be solved directly from the bottom up:

x4 = 163/56 - 28/109 = 0.7477
x3 = (2/T)[41/56 — (47/8)x4] = —0.5229
xy; = —(1/2)[5/4 — (7/2)x4] = 0.6835
x; = (U8)[1-(1/4)x4 — (1/2)x3 — (1/2)x,] = —0.1422 (5.5
(This result should be checked by substituting it back into the original set.)
The general situation can be handled in the context of matrix operations. While
the derivation proceeds, remember the steps in the example just worked, in which no

matrix operations were performed. In this derivation, a number of small possible diffi-
culties will be ignored. In particular, there will be a lot of division, and I will assume




84  Analysis

all divisors to be nonzero. When it comes time to write programs to perform these
operations, the question of zero divisors will have to be faced.

As already seen, the idea of Gaussian elimination is to ellmlnatw the
second linear equation represented by the matrix equation, t then to eliminate x; and x,
from the third equation, and to continue thls process until the ith equatlon has zero
coefﬁments for xy, x5, .. ., x; _; and the modified matrix is triangular, that is, all
the elements below the main diagonal are zero. Once this is done, the solution for x
is immediate. I will now outline how this is done in general.

First, I will use : = to denote the sort of = that is used in computer programming.
In ordinary arithmetic, x = x + 3 is nonsense. In programming, this means to add 3
to the number at the address indicated by x, and store the result at that address. This
is usually understood, but I want to emphasize that difference in this section.

The elimination proceeds by subtracting a multiple of the first row from each of
the other rows in turn. The multipliers are chosen such that the leading term of each

succeeding row is zero, that is,

ly: = aylay, ay =0

axn: =axn — lyap, ap: = ap — lyag;s, ..., 4y = ay, — lyay,
byt = by — Iy1by;

I3 = a3 lay, a3 =0

azp: =axn —lyap, az: =az — lyja, . .., a3, = a3, — Iyay,
by: = by — I31by;

Iyt = api/ay, ayn =0

Apyt = Apy — lpap, ay3t = ap3 — lyag, - .., apy = Gy — Iyag,
bn: = bn - lnlbl

This operation is then repeated to eliminate the second coefficient from the third
through nth equations, as

Iy 1 = axnlay, a =0

azy: = axn — Inay, ay: = ay — Inas, . . ., a3, = az, — Ipay,
biy: = by — Inby;

lyp: = agplap, ap =0

g’ =agn — lpay, ag = au — lpay, . . ., as = ag, — lpay,
byt = by — lyby;
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Iyt = apalarn, a;,n =0

Qp3. = 4p3z — ln2aZ3v Aua’ = Qg — 1"26124, sy Qppe = Ay — anaZn
b": = bn - ln2b2

At the end of this procedure, one has an upper triangular matrix U and a new right-hand
side vector ¢, so that the original equation can be replaced by the simpler equation
Ur =c.

This whole ritual can be compacted into a pair of nested loops. Before going on
to that, and demonstrating some other interesting properties of U, I will work two
examples to illustrate the process. I will start by showing how the 2 X 2 works sym-
bolically, deriving a cute, quick inversion formula for 2 X 2 systems in the process.
Note that this works only for 2 X 2 systems. To that end, consider the equations

analz} [M}zlbl} (5.52)
an an X2 by '

After the first step, these become

>an ap X b, ]
= (5.53)
[O azz“azl’alz/an} Lz} L’z—azl “blay,

and
Xy = [by — ay - bylay]/lay — ay - aplay]
= lanby — axnbl/{ayay — apay)) (5.54)
and
x; = lanby — apby)/lajay — anay] (5.55)

which is equivalent to

1 - b
[xljl _ 1 an a;z] [ |] (5.56)
X2 —day ap by
where J = [aya,; — ay,a] is the determinant of the original matrix. The quick
ritual that shows up in Equation (5.56) is

Swap the terms on the main diagonal.

Change the signs of the other two terms.

Put the resulting matrix on the right-hand side.
Divide by the determinant.

Ll e

It is important to remember that this is valid only for 2 X 2 systems.
To make the abstract connection clearer, solve the set of equations given in Equa-
tions (5.47) using the matrix operations.
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EXAMPLE 5.4
A 4 x 4 MATRIX EQUATION BY GAUSSIAN ELIMINATION

Consider the matrix equation

8 4 4 2 x| 1
0o -2 R 7) | ) sm
0 -—12 12 274 x| ] 238
0 1 2 1112 X4 15/4

The multipliers /;; are
121 = 3/4, 131 = 1!8, 141 =1/4

and the reduced matrix equation is

8 4 4 2 X 1

0 -2 o I x| ) sm
0 =12 72 274( |xs[ |23
0 1 2 12 | xa 15/4

The next set of multipliers is
132 = ]/4, 142 = —1/2

and the matrix equation reduces by 1 again, to

8 4 4 2 X, 1

0o -2 0 2 x| | 54

0 0 72 478 xs [ ] 4116
0 o0 2 29/4) | x, 35/8

Finally, /4,; = 4/7, and the triangular matrix equation Ux = c is

8 4 4 2 X, 1

0 -2 0 712 | | 54
0o 0 72 418 x| 4116
0 0 0 10928 | xg 163/56

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

(5.62)
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which can be solved directly from the bottom up:

x4 = (163/56)(28/109) = 0.7477
x3 = (2/7)[41/56 — (47/8)x,) = —0.5229

xy = —(1/2)[5/4 — (1/2)x4] = 0.6835

X, = (18)[1 — x4/4 — x3/2 — x,/2] = —0.1422 (5.63)

This result should be checked by substitution back into the original matrix

8 4 4 2 —0.1422 1.0000
6 1 3 3 0.6835 2.0000
= (5.64)
1 o 4 7 —0.5229 3.0000
2 2 3 6 0.7477 4.0000

Note that the operations on the matrix and the operations on the right-hand side
can be done independently. This is useful when one wants several solutions to the same
linear system for different forcing vectors b. The operations on the matrix need be per-
formed only once. This can be accomplished as follows.

Form the matrix L. The elements of the main diagonal of L are all ones. All the
terms above the main diagonal are zero. The terms below the main diagonal are given
by /;, the multipliers found at each stage of the reduction. It is a remarkable fact that
the original matrix A is the product of L and U: A = LU. A factorization of the matrix
has been performed. This factorization is called the LU decomposition.

One more fact emerges. The original problem was Ax = b, and the reduced prob-
lem is Ux = ¢. Multiplying the latter expression by L produces the following sequence:

Ux =c¢
LUx = Lc
LUx =Ax =Lc =b (5.65)

so that ¢ is determined by solving the matrix equation Lc = b. L is a triangular matrix,
so that the solution is direct. The reduction ritual converts 4 to U and, at the same time,
creates the lower diagonal matrix L. The original problem is reduced to two simpler
problems:

Ux = ¢

Lc = b (5.66)
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Thus, once U has been determined, the system of equations represented by Ax = b can
be solved for any & by:

1. Finding ¢ from Lc = b.
2. Finding x from Ux = c.

EXERCISES

1. Find r; and r, from Equations (5.4) and (5.5). Multiply the matrices in Equation
(5.5a) to find explicit expressions for r; and r,. Show that these are the same as
the expressions found from Equations (5.4) and (5.5). (Hint: Use trigonometric
identities.)

{ 2. For the four-bar linkage defined by r; = 10, r, = 3, ry =7,ry =8

v a.
b.

Yo C.

Sketch the linkage for 6, = /2 (assuming 6 in the first quadrant).
Find 65 and 6, using the closed-form complex-variable algorithm.

Find 65 and 6, for 8, = 1.55 using the Newton-Raphson method with the
starting guess taken from 2.

. Write a general Newton-Raphson code in a language of your choice to solve the

four-bar analysis problem. Use this to trace the location of point C throughout
the cycle as 6, runs from 0 to 2x.

3. In the first diagram, the variable z3' = 0.8%8/z;. Find the position of point P at
0, =0, n/3, n/2, n, and T=/3:

r =543, r2=3, r3=5, r4=5

4. Find the position of point F in the second diagram when 6, = 2x/3:

ry = 10, ry, = 6, ry = 8, ry = 9, rs = 10.61, re = 7.78

Z' = 0.6€%6/z,, 7z, = 0.4¢'Miz,
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/' 5. Draw the path of point P at 20° intervals in 6, for
o = 20, 60, 75, 105°

(This is a total of 18 X 4 = 72 position locations.)

P

/
rl:]0,r2=2,r3=8,r4=7,|BP|=5

6. Add a four-bar linkage to drive the crank of the six-bar linkage shown in Figure
5.10 to drive link 2 back and forth between 0 and /2 when the four-bar crank
makes a complete circle. Timing and the choice of the ground link are free.

7. Identify the interior loops in each mechanism. How many links are in each loop?

AN

71777777777777777 7777777777,
(a) (b) (©)

”Mﬂ mm
@ ©

8. Assume that you can solve a four-bar linkage. Outline the procedure you would use
to solve the linkage shown in part b of the sketch.
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V' 9. Write a complete set of loop-closure equations for the following mechanism. Be

10.

12.
13.
14.

sure to define all the vectors necessary, and sketch them clearly.

Using the answer to the previous exercise, describe how you would calculate a
coupler curve for P as a function of 6,.

. In which direction should the crank turn to make the timing ratio greater than

unity?

N

77777 4 /77777
1

If the stroke length is to be 100 mm, what is the maximum length of the crank?
If the stroke length is to be 100 mm, what is the maximum length of the coupler?

Find the crank angle limits (if any) for the following linkage and all its inversions:
ry = 100, r, = 340, r; = 470, and r, = 340. Draw the linkage in several posi-
tions between the two limits, or throughout a complete cycle if there are no limits.



Chapter 6

Velocity and Acceleration
of Bar Linkages

Every point on a given link shares its motion and will have a velocity and acceleration
expressible in terms of the rates of change of the link angles 8,, 65, and 6,. (For a
slider crank, the variables are, of course, 65, 3, and r;.) To find these, it is necessary
only to express an arbitrary point P on a given link in terms of the basic link vector
z;. Let the position with respect to 4 (see Figure 6.1) of a point P on link j be written
(zp);- Because point P is attached to link j, (zp); can be expressed in terms of the
fundamental link variables z;.

For P on link 2,

(zZp)2 = 4222 6.1

For P on link 3,
(zp)3 = 22 + qaz3 (6.2a)

For P on link 4,
(Tp)s = 22 + 23 + q424 6.3)

In these equations, each g; is a complex constant representing the amount that z; must
be rotated and stretched to point from its base joint to point P. As in the preceding
chapter, the g will have the form

q; = a; exp(ib))

The notation here is general in that points attached to any link can be written in
a uniform notation. The reader will note that the special dyad notation for coupler
points could have been used. For example,

(zZp)3 =22 + wy (6.2b)

2y + 23 — wy (6.2¢)
I have introduced the g; notation as a more general one.

91
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FIGURE 6.1 A four-bar linkage illustrat-
ing an alternate notation for the complex
representation of the coupler point P, zp.

Figure 6.1 shows a four-bar linkage with the point P on link 3. As drawn,

Z|=—5

Zp = 3.1623 exp(1.2490i) = 1 + 3i
Z3 = 5.3852 exp(0.3605i) = 5 + 2

Z4 = 5.0990 exp(4.5150i) = —1 — 5i
and one can see that

zp = 5.8310 exp(1.0304i) = 3 + 5i
and

@323 = 2.8284 exp(0.7854i) = 2 + 2i

Complex division gives

_q3z3 _ 2.8284
=, T 53852

exp(0.4049i)

= 0.5252 exp(0.4049i)

Note that the g; are constants of the mechanism, independent of its position, and that
the velocity and acceleration of the points (zp); can be obtained by differentiation and
will involve the first two derivatives of the link angles 9;.

It is worth reminding the reader that z, points down and to the left. The angle
4.5150 lies in the fourth quadrant.
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CALCULATION OF VELOCITY AND ACCELERATION

The complete loop-closure equation may be written
Yz;=0 (6.4)
J

Differentiating, noting that z, is a constant, and using w; to denote the rate of change
of the angle 6, leads to

iwzzz + iw3z3 + i(:)4Z4 =0 (65)

where it is usual to suppose that w, is given. Dividing by i, multiplying by z4*, and
taking the imaginary part gives

w3 = —{Im[z4*2,]/Im{z4*2;3]} @, (6.6)

and a similar analysis [or the interchange of 3 and 4 in Equation (6.6)] gives the expres-
sion for

wy =_{Imfz3*2,]/Im [23%24]} w3 6.7)

Note that w; and w4 are formally infinite when Im(z;*z4) = 0. This factor
vanishes when z3 and z4 are aligned. This special orientation of a four-bar linkage will
be discussed further in Chapter 10, when the forces and torques required to make actual
linkages move are considered. A second differentiation gives an equation from which
the rates of change of w; can be determined:

[l(;.)z - wzz]Zz + [l(.:)3 - w32]z3 + [IO..)4 - w42]z4 =0 (68)

The only unknowns in Equation (6.8) are the two rates of change of w3 and w,.

Thus, the techniques used to derive Equations (6.6) and (6.7) can be applied again to

eliminate each one in turn. Multiplication by z,* makes the coefficient of w, purely

imaginary. Taking the real part of the equation thus eliminates w,. Noting that
Re(iz) = —Im(z) and simplifying gives

Im(z4*23) @3 = —Im(z4%27) @, — Re(z4*z7)wy?
—Re(z4*23) w32 — 24*24w4? (6.9)

The resuit for @, is obtained by interchanging the subscripts 3 and 4:

. . bl
Im[z3*24]0s = — Im[z3%25)@02 — Relzz*zalwy’ — Relz3*z4lws’ — 23%2305°

(6.10)

e mme pee 1 4 e P AT . £ A B O o 2145 e s b e i B e
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These can be used to write the velocity v;p and acceleration a;p by differentiating
expressions (6.1)-(6.3) and substituting for the w; and their derivatives. That result is

Vap = {02952, (6.11a)
Vip = iwzzz + iw3q323 (611b)
Vap = iwpZy + iw3Z3 + iwysqa2y (6.11¢)
for the velocities and
arp = [id; — w,'1922, (6.12a)
azp = [id; — w)’]zy + 03 ~ 0’19323 (6.12b)
agp = lid; — w'lzy + lids — wilzs + [idg — w2lgezs  (6.120)

for the accelerations.

These formulas are ideally suited to the construction of an algorithmic solution
sequence. The input to such a sequence would be the position of the mechanism, z;,
22, 23, and 24, g1, g3, and g4, and w; and w,. The first calculation is of w3 and w,.
These are used to find @3 and w4, and then the complex velocities and accelerations
follow immediately.

EXAMPLE 6.1

Let w, = —0.5rad/s, &, = 0, and use the mechanism shown in Figure 6.1 with the
dimensions given in centimeters. The object is to find the velocity and acceleration
of P.

Begin by finding w; and w,:

__ Im{(5.0990)(3.1623) exp[(—4.5150 + 1.2490)i]} <05
“3 7 7 Im{(15.0990)(5.3852) exp[(—4.5150 + 0.3805)i)}

~3.1623 0.1241
5.3852 0.8376

(—0.5)

= +0.0435 rad/s

__ Im{(5.3852)(3.1623) exp[(—0.3805 + 1.2490)i]}
¥4 7 7 Tm {(5.3852)(5.0990) exp[(—0.3805 + 4.5150)i]}

(—0.5)

_ 31623 0.7634 (~0.5)
~5.0990 (—0.8376)

—0.2826 rad/s
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Intermediate calculations required for w; and w4 are
24%23 = (5.0990)(5.3852) exp[(—4.5150 + 0.3805)i]
Re(z4*z3) = —14.9997, Im(z4*z3) = 23.0003
24%25 = (5.0990)(3.1623) exp[(—4.5150 + 1.2490)/]
Re(z4*z,) = —15.9999, Im(z4*z,) = 2.0008
73%z; = (5.3852)(3.1623) exp[(—0.3805 + 1.2490)/]
Re(z3*z,) = 11.0007, Im(z3*z,) = 12.9997
and, of course,

RC(Z3*Z4) = _14.9997, Im(z3*z4) = —23.0003

Substituting these values gives the angular accelerations of links 3 and 4:

15.9999 14.9997 (5.0990)2

95

Py = 5?2 + 0435)2 — ="~ (—0.2826)2
93 = 230003 O * 23,0003 0" T 5370003 ¢ )
= 0.1739 + 0.0012 — 0.0903 = 0.0848 rad/s2 (6.13)
. Z11.0007 14.9997 —(5.3852)2
= P 05 + 2220 (0.2826) + — 2 (0.0435)2
©+ = 530003 O T 23,0003 ¢ ¥t 530003 ¢ )
= 0.1196 — 0.0521 + 0.0024 = 0.0699 rad/s? (6.14)

and it is a simple matter to complete the calculation

vip = i(—0.5)(3.1623) exp(1.2490i) + i(0.0435)(2.8284) exp(0.7854i)

= 1.5 — 0.5/ — 0.0870 + 0.0870i

= 1.4130 — 0.4130i = 1.4721 exp(5.9988i) cm/s (6.15)

and

asp = —(—0.5)2(3.1623) exp(1.2490i)
x [0.0848i — (0.0435)2](2.8284) exp(0.7854i)

- 0.25 — 0.75i — 0.1696 + 0.1696; — 0.0038 — 0.0038:

I

—0.4234 — 0.5842i = 0.7215 exp(4.0852i) cm/s? (6.16)
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v3p

asp

FIGURE 6.2 Velocity and accelera-
tion vectors vip and asp for the coupler

w2 point of the linkage shown in Figure
6.1, assuming counterclockwise rota-
tion of the crank, as shown.

Figure 6.2 shows the mechanism with the velocity and acceleration of point P
superposed.

THE PHYSICAL NATURE OF VELOCITY
AND ACCELERATION

The velocity of one point with respect to another can be decomposed into a com-
ponent parallel to the vector joining the points and one perpendicular to that vector,
as well as, of course, the usual Cartesian decomposition. The acceleration can also
be decomposed. Equations (6.15) and (6.16) give the Cartesian decomposition. In
kinematic applications, the parallel-perpendicular decomposition has more physical
significance and can be linked to what you have already learned in elementary
dynamics.

Consider first a single link rotating steadily about a fixed point. The complex
representation of this can be written as z = re’“’, where I have written wt for 6. In
this simplest case, w is constant, so that vp and ap are at right angles to each other,
vp at right angles to z, pointing in the direction of rotation, and ap antiparallel to z,
pointing back at the origin. This simple system is depicted in Figure 6.3. This center-
directed radial acceleration is just the usual centripetal acceleration.

If the system is complicated by allowing w to vary with time, then the direction
of acceleration (but not of velocity) changes. Taking the second derivative of z in this
more complicated case gives

a=[iv — w?]z 6.17)

[Compare this equation to Equation (6.12a).] The second term is antiparallel to z and
is the centripetal component of the acceleration. The first term is new and represents
a change in v parallel to v, perpendicular to z. This is usually referred to in kinematics
as the tangential acceleration.
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FIGURE 6.3  Velociry and acceleration of a simple grounded
link, say, a crank or a follower.

Each link of a mechanism is a rigid body (in the approximations with which
kinematics is concerned). Thus, the motion of one point with respect to another can
only be a rotation. The velocity of one point with respect to another is always perpen-
dicular to the line joining the points, as in the simple example just discussed. The rota-
tion need not be constant, so that the local relative acceleration need not be purely
centripetal, as shown in Example 6.1.

The motion of an arbitrary point on a link can then be viewed as the sum of the
motion of the point with respect to some point on that link, usually one of the joints,
and the motion of the reference point. This decomposition is natural in the complex-
variable formulation, as can be seen by examining Equations (6.11) and (6.12). These
equations show what is meant by taking the sum. In the velocity expressions, the last
terms on the right-hand sides represent the rotation of P with respect to one of the joints
of the link. Each additional expression represents the motion of one joint with respect
to the previous joint. The chain closes with the ground pivot joint A, the reference point
for the analysis. In Equation (6.11a), there is simple rotation of link 2 around joint A.
In Equation (6.11b), the first term is the rotation of B around A4, and the second that
of P around B. In Equation (6.11c), the first term is B around 4; the second, C, around
B; and the third, P, around C.

The accelerations can be similarly decomposed. In Equation (6.12a), the two parts
of the acceleration are the tangential and centripetal acceleration of P around A, the
basic link 2 rotation. Equation (6.12b) has the two components of acceleration of B
around A, followed by the two components of P around B. Finally, Equation (6.12c)
shows the components of acceleration of B around A, C around B, and P around C.

It is of some interest to reexamine Equations (6.15) and (6.16) from this point of
view. In Equation (6.15), the term 1.5-0.5i represents the motion of B with respect
to A4, and the term —0.0970 + 0.0870i represents motion of P around B. Note that this
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is perpendicular to g3z3, the line from B to P, as it must be. Equation (6.16) gives
the accelerations. The term —0.25 — 0.75i is the centripetal acceleration of link 2,
which has no tangential acceleration because w is constant. The terms —0.1696 +
0.1696i and —0.0038 — 0.0038i represent the tangential and centripetal accelerations,
respectively, of P with respect to B.

The process of calculating velocities and accelerations can obviously be put in the
form of a pseudocode algorithm. Program 6.1 is such a code, using a position analysis
code such as Program 5.8 to find the angles.

PROGRAM 6.1:
FOUR-BAR VELOCITY AND ACCELERATION

enter (r1, ra, r3, rg, 64, 05, @y, d’z)
find angles (), r;, r3, 14, 8, 64, 03, 04)
w3 = —Im{z4*2,}/Im {z4*23} w;

Wy =-Im {23*22}/1111 {23*14} wr...

temp; = —Im{z4*2,} @, — Re{zg*z5}wq? — Im {z4*23} w5’

— Z4*Z4w42

temp, —Im {23*22}0)2 — Re {23*22}(022 - Iﬂi{Z3*Z4}w42

— 23*Z3042

@3 = temp;/Im{z,*z;}

@y = temp,/Im{z3*z,}

2y = iwy2y; 23 = lwiyZ3;  Zg4 = iwyly

.o — .. 2 . e — .o 2 . .o _ .. 2 .
2 = (lwy — wy)zy; 73 = (lws — w39)z3; 24 = (iwg — wg)24;

end

Figure 6.4 shows an example of how the velocity and acceleration change during
the motion of a coupler point. The linkage has relative dimensions

r = 110, r, = 60, ry =100 = ry
a; = 0.8, «a;=458"°

The first part of the figure (Figure 6.4a) shows the linkage in its upright position, with
the crank angle at 90° and the coupler curve traced out by one complete rotation of
the crank in the counterclockwise direction. The points are drawn at equal intervals.
The coupler point moves slowly where the curvature is high and more rapidly where
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(b)

FIGURE 6.4 The motion, velocity, and acceleration of the coupler point of a four-bar link-
age: (a) the linkage and its coupler curve; (b) the coupler curve with velocity vectors; (c) the
coupler curve with acceleration vectors. The dimensions of the linkage are r; = 110, r; = 60,
r; = 100, ry = 100.

the curvature is small. The second and third parts of the figure (Figures 6.4b and 6.4c)
show the same coupler curve, with arrows indicating the relative magnitude and direc-
tion of the velocity and acceleration of the coupler point, respectively.

The velocity is tangent to the curve. The acceleration is centripetal during most
of the cycle. There is a significant positive tangential component of acceleration
on the nearly straight path segment running up the right-hand side, and a significant
negative tangential component as the point passes over the upper corner in a counter-
clockwise sense.

VELOCITY AND ACCEIL.ERATION ANALYSIS OF
SIX-BAR AND HIGHER LINKAGES

The technique for finding the velocity and acceleration for four-bar linkages can be
extended easily to linkages of an arbitrary number of bars. For a six-bar linkage, there
are two independent loop-closure equations; for an eight-bar, three, and so on, as has
been shown. The velocity and acceleration of each link can be related to that of the
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crank by successive differentiations, just as for the four-bar linkage. For example, the
Stephenson II six-bar linkage has the two loop-closure equations given in the last
chapter, Equations (5.38). These are

ral +ZZ+Z3+Z4+Z6=O

9323 + 25 + ge%6 — 24 =0

Differentiating each once gives a pair of (complex) equations for the angular velocities,

worZn + w33 + w44 + welg = 0

w3g323 + WsZs + WeGsZe — wWaZs = 0

and differentiating once again gives a set of equations for the angular accelerations,

(W2* — idy)zy + (3° — i@3)23 + (Wa* — iGg)zg + (W’ — id6)Z6 = O
2 .. 2 L. 2 .. 2 .. _
(w3" — iw3)q323 + (ws5" — iws)zs + (W™ — iwWe)GeZe — (W4" — iwg)24 =0

The simple trick used to isolate the individual angular velocities and angular accel-
erations for the four-bar linkage does not apply here. The entire linear system must
be solved _simultaneously. This is simple enough if an a]gebralc equations solver is
avallable presumably one based on the techniques explored at the end of the preceding
chapter. The four velocity equations determining the angular velocities in terms of the
crank rotation rate are

ry cos @3wy + ry cos f4w, + rg cos Ggwg = —ry cos 0w,
rs sin 03(03 + 1y sin 04(.04 + rg sin 060)6 = —-r sin 620)2
asry COS(03 + (13)0)3 — I4 COS 040)4 + r5 cos 050{5 + agrg COS(66 + (16)(.06 =0

asry sin(03 + (13)(.03 il ) sin 04(.04 + rs sin 05(.05 + (/X343 Sin(0(, + aﬁ)w(, =0

A similar set can be written down for the angular accelerations. This is left as a home-
work problem. Either set is a set of linear algebraic equations, nonsingular for almost
all orientations of the linkage, that can be solved straightforwardly using numerical
techmques such as the codes given in any modern numerical analysis book. The reader
should remember that the position problem needs to be solved for each velocity prob-
lem, using, for six-bar and higher linkages, one of the indirect, successive approxima-
tion methods.

VELOCITY ANALYSIS OF SINGULAR MECHANISMS

There are other ways of analyzing mobility than those explained in Chapter 1. A mobile
mechanism can move, can have velocities. That fact provides an alternate method of
analysis.
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Consider a simple n-bar linkage with n revolute joints. The loop-closure equation
can be written

31+ + - +2,=0 (6.18)

If z, is the frame link, the first derivative of the loop-closure equation with respect to
time is

i0,2) + -+ +i6,2, =0 (6.19)

One solution to Equation (6.19) is that all the 6, vanish. The mobility is equal to the
number of other solutions that can exist.

Equation (6.19) represents two homogeneous real equations in n — 1 unknowns.
In general, if n < 3, there are no nonzero sets and, if n > 3, one can choose n — 3
velocities arbitrarily. The mobility for this simple situation is n — 3, in agreement with
the Kutzbach criterion, Equation (1.3),

m=3n-1)-2j,=3n—-1)—-2n=n-3 (6.20)

For more complicated situations, it is necessary to differentiate all the independent
loop-closure equations. If there are k independent loops, this will produce 2k equations
in n — 1 unknowns. If (n — 1) > 2k, then 2k + 1 — n unknowns can be chosen
arbitrarily, and the mobility is 2k + 1 — n.

This same technique can be used to assess apparently immobile mechanisms such
as that shown in Figure 1.10f. Figure 6.5 shows a more general version of the linkage.
Two independent loop-closure equations are

Lttt = 0 (6.21a)

— 24+ 25+26+27,=0 (6.21b)

FIGURE 6.5 A five-bar (z3 and zs are
part of the same link, as are z; and z7)
linkage with six joints. This is formally
immobile (3(5 — 1) — 2(6) = 0) and
potentially pathological.
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Differentiating these gives

i052, + i0325 + 16,24 = 0 (6.22a)
—i04z4 + 0325 + if6z6 = O (6.22b)
using the fact that é5 = é3 because z3 and z5 are attached to the same link and will

rotate together.
Equation (6.22) can be rewritten in matrix form

rycos 9, r3 cos 03 ryq cos 04 0 éz

ry sin 8, ry sin 83 rq4 sin 84 0 0:3 —0 (623
0 rs cos(fsry) —r4cosfy, re cos f¢ 8,
0 rssin(@,ry)  —rysinf,  rgsin 0 B

and this set will have a nontrivial (not all fs = 0) solution only if the determinant van-
ishes. That determinant can be written

D = r2r4r6[r3 sin(04 - 06) Sil’l(03 - 02) + rs sin(03 + ¢ — 06) sin(04 - 02)]
(6.24)

where 05 = 83 + ¢, ¢ constant.

If 8, = 6, = 0, the determinant vanishes. However, unless ¢ = 0, this is only
a local vanishing, and the system is not truly mobile. Other local mobility conditions
also exist.

EXERCISES

+ 1. A well-designed slider-crank mechanism has the following relations among its
links:

O<ri=rs—n

(For definitions, see the sketch.)
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Show that
sin 63 = —[r, +r sin 02]/"3

ry = rycos 0, + r3[1 — sin? 8,]*

. Using these, write a program to find 65 and r, for the general well-designed slider

crank.

. If 8, = wt, find dry/ds.
. At what value(s) of 0, is dr,/dt

a. maximum?
b. minimum?

c.zero?

. What is the stroke length, that is, the difference between the largest and smallest

values of r,?

. For the slider crank in the figure, write the outline of a computer program to find

the velocity and acceleration of the slider, assumed to have a mass m. The outline
will be a list of procedures, with an explanation of what each does. Give each pro-
cedure an argument list, and identify which are inputs and which are outputs. No
pseudocode is required, but enough detail should be given to make the operation
clear.







Chapter 7

Higher Pairs: Analysis
of Gears and Cams

WHEELS AND GEARS

The higher pairs are characterized by line or point contact rather than surface contact.
Higher pairs include wheels, gears, cams, chains, belts, and fluids. This chapter dis-
cusses the behavior of (spur) gears and wheels and provides an introduction to the
behavior of cams. The discussion is limited to spur gears, gears that behave like wheels
that turn without slipping in their pitch circles. This limitation is consistent with the
limitation of the text to planar kinematics. Closely related to spur gears are paraliel
helical gears and noncircular gears. The most common example of the latter is the drive
gear (chain wheel) in many modern bicycles. These can be analyzed by combining the
techniques introduced here for spur gears with the noncircular analysis introduced for
cam motion.

Gear design involves tooth shape, selection of materials, and many other non-
kinematic considerations. Any standard textbook on machine design (e.g., Shigley
1977) provides a useful introduction to these problems, which are dealt with in special-
ized books on gear design. The essential kinematic feature of gears is that they can be
idealized as wheels that contact without slipping. There is no kinematic distinction
between wheels and gears. Figure 7.1 is a sketch of a portion of a spur gear showing
three teeth. I have labeled three radii. The two important kinematic radii are R, the
outer radius of the gear, and r,, the radius of the pitch circle. The latter is the radius
of the equivalent wheel. R is the maximum radius of the gear and needs to be taken
into account in designing clearance.

For the purpose of kinematic analysis, I will idealize gears as wheels rolling with-
out slipping on their pitch circles. Systems of gears will be limited to planar gear trains,
for which the rotation axes of all gears are parallel. I will consider standard and plan-
etary gear trains, including the simple limit of the rack-and-pinion system. The latter
is also the limit that gives the kinematics of a wheel rolling on the ground without slip-
ping. Phenomena associated with real teeth, such as tooth slippage, contact, wear, and
chatter, will be neglected. Inasmuch as wheels and gears are kinematically equivalent,
I will not always distinguish between them, using the word that is more appropriate
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FIGURE 7.1  Sketch of a portion of a spur gear, showing three teeth and the outer radius R,
the root radius 1., and the pitch circle radius r,.

wir = wary

FIGURE 7.2  Two rollers in contact at point P.

for the situation I am discussing at the time. I will refer to either as a roller when I
wish to emphasize the generality of the discussion.

The Basic Roller Pair

Rollers are used to transform rotary motion. Consider two rollers of radii r; < r,,
touching at a line contact, as shown in Figure 7.2. (In the particular case of gears, it
is common to call the smaller gear the pinion and the larger the gear.) The use of r
for radius will be seen to be consistent with the use of r as the magnitude of the complex
variable z.

Any roller has one degree of freedom; it can rotate about its axle. The axles are
supposed to be fixed in some way that makes the center-to-center distance between the



Higher Pairs: Gears and Cams 107

two rollers constant. If there is no friction at the contact point (no teeth on the gear),
the rollers can slip, the system is unconstrained, and it has two degrees of freedom.
If there is no slippage, the case of interest, the system is constrained. It has one degree
of freedom: the rotation of one roller is completely determined by that of the other.

Slip is relative tangential velocity. The velocity of the material points on the rollers
is everywhere tangent to the pitch circle. (This is kinematically indistinguishable from
the motion of a single bar rotating about its pin, discussed in Chapter 6.) If there is
to be no slip, the tangential velocity of the two rollers at the point of contact must be
the same. In the figure, the tangential velocity is directed down for both rollers and
is of magnitude wr. I will use w to denote rotation rate (in rad/s when dimensional)
and r to denote radius of the (pitch) circle. Unsubscripted variables are general; when
T wish to specify a specific roller, I will add numerical subscripts.

The relation between the rotation rates of the two rollers can be determined by
equating the magnitudes of the tangential velocities:

wiry = Wyl a.n

Notice, however, that the direction of rotation changes. The left-hand roller rotates in
a clockwise sense and the right-hand roller in a counterclockwise sense. This simple
formulation, useful for getting started in understanding the motion of rollers, requires
one to keep track of the direction of rotation independently. To keep track of magnitude
and direction simultaneously requires a vector formulation, which can be transformed
into the complex-variable formulation used in the rest of this text. This can be done
using loop-closure equations and velocity analysis.

Recall that the velocity vector v of a point P that is defined by a position vector
r from any point on the axis of rotation w is given (in three dimensions) by w X r.
The vector  is parallel to the rotation axis, and its direction is such that positive
(the magnitude of w) gives counterclockwise rotation. For planar kinematics, all rota-
tion vectors are perpendicular to the plane, parallel to e,. Positive rotation rotates a
position vector counterclockwise by /2, and negative rotation clockwise by /2. If
the complex variable z now denotes the position vector to the contact point, rotation
by /2 is equivalent to multiplication of the complex vector by ¢/™2, and the velocity
of any point on a roller can be represented in complex form by

v = wel™z = jwz (7.2)

The sign of w determines the direction of rotation. The vector z represents the instan-
taneous position of some fixed line scribed on the roller.

In Chapter 6, it was shown that simple rotation can be represented in complex
notation by letting # = wt. Then, simple differentiation gives the same result as the
argument leading to Equation (7.2). It is desirable to extend this to the case of roller
pairs (and then to gear trains), but some additional preparation is necessary.

As the rollers shown in Figure 7.2 spin, the contact point P does not move. The
linkage variables do move, and differentiating the linkage variables gives the velocity
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of the tip of the linkage variable at the tip of the linkage variable. Because the linkage
variable is rigidly attached to the roller and because the motion is purely circular, the
tangential speed of every point on the pitch circle is the same, and no harm is done
by ignoring the fact that the speed is calculated at some point other than the contact
point. The velocity is not the same because the tangential direction is different at differ-
ent points on the roller. This means that the analyst must keep mental track of what
is being done and cannot automate the calculations. This can lead to error. It is there-
fore necessary to understand how to take time derivatives at a point fixed in space when
the underlying link is moving. This is accomplished by taking the convective deriv-
ative, the rate of change of position of a material point that is, at any given instant,
at a specified point P in space, not necessarily attached to the material. Alternatively,
the absolute material velocity can be calculated for an arbitrary point on the link in
question, and then the arbitrary point can be placed in coincidence with point P where
the velocity is to be matched. The latter method is easier to understand and will be
adopted here.

Figure 7.3 is a redrawing of Figure 7.2 with the addition of three complex vectors
representing the two rollers and the frame. I show the variables as attached to the
wheels. When ¢ = 0, the linkage vectors point to the right. The acute angles between
the horizontal and z, and z; are w,¢ and w1z, respectively. Note that, as drawn,
@y < 0 and w3 > 0. Let the initial (+ = 0) position be denoted by an (additional)
zero subscript.

2 = zzoeiwzl = rzeiwzl, 23 = Zsoeiw:,l — r3eiw3t =0 (73)
A loop-closure equation can be constructed exactly as for bar linkages. However, the
“‘joints’’ are defined by the geometry, not by the physical objects. The joints are not
attached to their respective rollers. The loop-closure equation is the very simple rela-

tion among the zero linkage variables,

21+ 2y — 230 = 0 (74)

FIGURE 7.3  Two rollers in contact at point P, showing complex vectors attached to the two
rollers.
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Velocities can be found, not by differentiating the loop-closure equation [every term
in Equation (7.5) is a constant], but by finding the velocity of the material point instan-
taneously at P from the point of view of link 2, and then from the point of view of
link 3, and then equating these two. The rotation of link 2 is given by iw;2; and that
for link 3 (in general) by

—lwyz; t iwszs (7.5)

where z, denotes a frame vector pointing from B to A4, and w, its possible rotation
rate, here zero. The two velocities must be equal when z; = zy and z3 = —Z30,
leading to

[WaZp = —iwaZag = [wary = —iwars (7.6)

The complex-variable/vector approach makes it unnecessary to distinguish
between exterior contact, as in Figure 7.2, or interior contact, shown in Figure 7.4.
In the latter case, the rotation direction of the two rollers will be the same, both positive
as drawn in the figure. This can be deduced directly, following the procedures just
introduced:

_l'w:Zz[) = —iw3z30 nd iwzrz = iw3r3 (77)

It is instructive for the reader to work out the directions of the vectors in Equation (7.7)
in conjunction with Figure 7.4. (See Exercise 1 at the end of the chapter.)

FIGURE 7.4 Two rollers in contact at point P. Link 2 is inside link 3.
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Real systems of gears use more than two gears (or one gear pair). Fortunately, the
complex-variable approach makes it relatively easy to construct the appropriate equa-
tions for systems of gears, or gear trains. Figure 7.5a shows a train of five rollers.
A loop-closure equation can be written for the entire system. This is useful as an exer-
cise in understanding the behavior of the linkage variables z j» although the analysis is
best done one pair at a time by writing the material velocity at each contact point in
terms of the two gears that meet at that point. An overall loop-closure equation is

ry exp i, + ry exp i,
ry exp ifl; + ry exp if
rq €xp ify + rsexp if, (7.8)
rs exp ifs + rg exp ifs

+ Zl =0

This form of the loop-closure equation assumes that each link variable points to the axle
of the next roller at r = 0. I introduce angles 0, for each link. These represent phase
angles, as it were. Each 6, points from the axle of the jth link to the axle of the
(j + Dth link. Thus,
Zjo = I jewf'

Figure 7.5b shows a close-up view of the second roller, link 3, for w3 > 0, to clarify
the various angles introduced. Each line of Equation (7.8) represents a link variable
that connects two axles. The first line connects A to B; the second, B to C: the third,
C to D; and the fourth, D to E. The vector z,, the frame, connects E back to A.

The absolute velocity of each link is then the rate of change of the appropriate base
vector

for link 3: <1 + 5 220
r

ol N

rp

>230
. I r4 r5
forllnkS: 1 +— Zzo+ 1 +— Z3O+ 1 + —= Z40
rs ry

rp
for link 6: <1 + 2>Zzo + <1 + B)Zao + (1 + —r—5>24o + <l + ﬁ>Zso
ry rs rs rs

plus the relative motion of each with respect to its axle. The first roller, link 2, has
a zero base vector since the origin of the system has been chosen at A4, the axle of

for link 4: <1 + I—)zzo + <1 +
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(b)

FIGURE 7.5 A five-gear train of spur gears, showing the complex link vectors in their initial
positions: (a) the complete gear train; (b) a close-up of the third link. Link 1 is the frame link
connecting points E and A.
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link 2. All the axles are fixed, the derivatives of all base vectors vanish, and the

velocity of each roller is rotation about its own axle—iw;z;. The (tangential) velocities

must be equal at the four contact points defined by z, = 249, 23 = 239, 24 = Zug,
Zs = Zsgp, and

r rq rs r

r

6
3= T 20, 24T T30, Is = 40, L6 = —— Is0 (7.9)
r2 r3 T4 5

Making this substitution leads to four equations relating the five rotation rates:

Wyl + w3ry = 0

—w3rs + wylry = 0 (710)

—Wwyry + wsrs =

—Wwsrs + wWelg = 0

Thus, knowledge of the geometry and any one rotation rate is sufficient to determine
all the other rotation rates, as is to be expected in a one-degree-of-freedom system.

EXAMPLE 7.1

In Figure 7.5a, let r; = 9, 32, 14, 7,20 mm for j = 2, 3, 4, 5, 6, and let w, = 1.2
rad/s. (By writing this as a positive number, I imply counterclockwise rotation.)
Direct substitution in Equations (7.10) gives the other four rotations as 0.3375,
—0.7714, 1.5429, —0.5400 rad/s, respectively.

It is instructive to examine the kinematic inversion of gear trains. This will lead
naturally to the discussion of planetary gear systems. Begin by considering the simple
system shown in Figure 7.2. This is redrawn in Figures 7.6a—c. In the new figure, the
frame link has been replaced by an arm, link 1, that is free to move. The three possible
inversions are generated in the same way that bar linkages are inverted: by fixing in
turn each of the links. Figure 7.6a shows the arm fixed. This is identical to the simple
system shown in Figure 7.2. Figures 7.6b and 7.6c show the two inversions obtained
by grounding links 2 and 3, respectively. These are comparable situations, and I will
analyze the first one here, leaving the second for the Exercise section.

Figure 7.7 shows an expanded view of the second inversion, for which link 2 is
grounded. Now zp is a function of time,

Zp = ryexp iwt

but, as I deal with the absolute velocities of the links, this does not present a difficulty.
The absolute velocity of any point on link 3 is given by —iw,z, + iw;z3 (recall that
z; points from B to A), and this must vanish when

r r
z3=—3z.—>i<w, ——3w3>z| (7.11)
r r
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FIGURE 7.6 Three inversions of
the two-gear train: (a) arm grounded,
as in Figure 7.2; (b) link 2 grounded;
(c) link 3 grounded.

FIGURE 7.7 Detailed picture
of the second inversion, rthat
shown in Figure 7.6b.
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Links 1 and 3 rotate in the same direction. The rotation of link 3 in the new frame is
different from that in the old frame. [It may be helpful to compare this discussion with
that in Erdman and Sandor (1984).]

The system shown in Figure 7.7 is the simplest example of a planetary gear train.
The central gear 2 is called the sun gear, and gear 3 is the planet gear. More complex
arrangements are, of course, possible. Several examples are given in Chironis’s com-
pendium of mechanisms (1965). Additional examples will be explored later but, first,
it is interesting to look at one limiting case of the simple planetary system, the case
for which r| (and r,) tends to infinity and w, tends to zero in such a way as to leave
the product w,r; = v, constant.

Figure 7.8a shows the limiting case for a grounded link 2. The analysis given
earlier is easily transformed. First, the absolute velocity of link 3 remains —iw;z, +
iw3z3 because the limiting process preserves the product w,r, = v,. This must still
vanish at z; = —(r3/r )z, leading directly to Equation (7.11). This can be rewritten
in a slightly different form to make clear the limiting process,

i(w]rl - r3w3) exp(iw]t) =0- VI = w33 (712)

so that the rotation rate of a wheel of radius » whose axle is translating at v is w =
v/r. Conversely, if a wheel is turning at w without slip, the translational velocity of
its axle is wr.

w3

Z3

4

/117

Z1

@

pinion w3
23

y/177/4 LU

L | ——
() 777777 rack 7777 v = wsry

FIGURE 7.8 Limiting cases of the two roller train: (a) the wheel rolling without slip; (b) the
rack-and-pinion system.
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Fixing the axle of the small roller gives a rack-and-pinion arrangement. The small
roller is the pinion, and the infinite roller is the rack. The rotation of the pinion is con-
verted to linear motion of the rack. This is a commonly used automobile steering link-
age. It is an inversion of the wheel rolling without slip. This can be made clear by a
short argument illustrated by Figure 7.8b. Fixing the axle of the pinion is equivalent
to grounding link 1. The speed of the rack is w3rs3, positive (to the right) when w5 is
positive. The travel of the rack is obtained by integrating the expression for velocity.
Thus, the rack travels 27r; for each full revolution of the pinion.

In a modern automobile, the number of turns of the pinion need not be the same
as the number of turns of the steering wheel. There is a steering gear box, with or with-
out power assist, between the steering wheel and the pinion. This is used to reconcile
considerations of convenience to the driver with those relating to maneuverability of
the vehicle and the strength of the pinion and rack.

The central feature of a planetary gear system is that the axle of at least one planet
gear rotates around the sun gear. The sun gear itself may rotate. It was fixed in the
example given, but requiring the rotation rate of the sun gear to be zero is just a special
case of specifying that rotation rate. A general planetary gear train requires two inputs.
One of them is frequently to fix one gear, sometimes the sun, sometimes the external
ring gear.

Figure 7.9 shows a sketch of a three-gear planetary gear train. Links 1 and 4 (the
ring gear) are coaxial, and link 2 (the sun gear) is fixed. As link 1 rotates, it carries

FIGURE 7.9 A three-gear (four-link) planetary gear train with the sun gear (link 2) grounded.
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link 3 with it. Two positions are shown. The absolute motion of the four links in terms
of their linkage variables and rotation rates are, for links 1-4, respectively, iw,z;, 0,
iwlzl + iw3Z3, and iw4Z4.

Figure 7.9 shows w; > 0. There are no-slip conditions at P, and P,, and these
points are defined by

r3 r;
Pizz=—-—2z, z5=-"z
rl r
ry ry
Pyrzg=—z, z3=-—z
r r

where z; has been taken to point from A to B. The rotation of the bar, link 1, will be
taken to be w;. Application of the no-slip conditions leads to

. . . 3 I3
w1z +iwzzy =i w,-—r~w3 z1=0—>w,=;~w3
1 1

, , , r3 . , Iy
lwz) +iwzzy = t<w| + r—w3>z, = iwy24 = tw4—r—z, (7.13)
! 1

rs ry
"’w1+r—w3=7w4
1 1

EXAMPLE 7.2

Let r, = 3 in. and r3 = 6 in. for the system shown in Figure 7.9. Geometry
demands that r; = 9 in. and r4 = 15 in. Let the arm, link 1, be driven at 3 rad/s.
Substitution into the set (7.13) gives, in turn,

9
w3 = 8(3) = 4.5 rad/s
9 6
Wy = E<3 + 5(45)) = 3.6 rad/s

EXAMPLE 7.3

Consider an inversion of the simple planetary system shown in Figure 7.9. Ground
the ring gear, link 4, and let the sun gear be free to rotate. Find the rotation rates
of links 2 and 3 given the rotation rate of link 1.

First, list the absolute velocities of the four links: iw,z;, iw,2s, iwz; +
iw3z3, and 0, for links 1-4, respectively. The two points at which the slip condi-
tions must be applied are the same, and the equations necessary to solve for the
rotations are
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r r r r
. . _ _ 73 _ _ 2, 3 _ 72
w12 +1w3iZy = I w 7 w3 |27 = lwyZy = wz'r_Zl w; — r—w3 = r—w2
1 1 1 1
(7.14)

. . . 3 "3
iwgz) +iwszy =il w; + — 93 21=0—2 w + r—w3 =
1 i

Using the same numerical data as in Example 7.2 gives
9
w3 = ¢ (3) = —4.5 rad/s

9 6
wy = 5<3 - —9—( - 4.5)> = 18 rad/s

Note that this arrangement reverses the direction of rotation of link 3.

EXAMPLE 7.4

Figure 7.10 shows a slightly more complicated planetary system. Links 1, 2, and 5

are coaxial. Link 5 is grounded. Links 3 and 4 are pinned to link 1. The rotation of

link 1 drags links 3 and 4 with it. The problem is to find the relations among the rota-

tion rates. As above, begin by listing the absolute velocity of each link: iw,z;, iw,27,

iw [(r3 + r)/r)z, + iwszs, iw;zy + iwgzye, and O for links 1-5, respectively.
There are three contact points, defined by

"3 r
PIIZ3= -2, Iy = —23
Ty r
‘ s r3
Pzi 24 = ——12, 23 = —4
1 r
, T4 rs
P3Z 24 = —2)» 5 = —I)
r r

At P|, links 2 and 3 must corotate. Equating the absolute velocities of the two links,
substituting for z, and z; to locate the point P, and, finally, simplifying give one
equation relating to w;, w;, and w3. The sequence of operations is

ry +r

iszz = iwl—2| + iw3Z3
r
. n . it .o
lwy—2| = ilwj——2; — lw3—2 (7.15)
r r r
ry r3 rs + r
wry— twy— = w—

r ry ry
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I leave it to the reader to follow the same procedures and show that the other two
equations relating to rotation rates are

r3 ry ry +ry
w3— twg— = w————
r ry r
(7.16)
ry
Wyg— = —w)
r

If the system is driven by the sun gear rotating at 4 rpm (0.419 rad/s) and the
link lengths are 11, 2, 4, 1, and 12 cm, respectively, the other rotation rates can be
found by solving the set of algebraic equations

6 -4 0 W) 2w,
5 —4 -1 w3 = 0 7.17)
11 0 +1 Wy 0

The reader can easily verify that the final result is: @, = 0667 rpm, w3 = —1.000
rpm, and w4 = 7.333 rpm.

Be b

FIGURE 7.10 A four-gear (five-link) planetary gear train with the outer-ring gear grounded.
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CAMS

Strictly speaking, one should talk of cam pairs, a pair consisting of an eccentric and
a follower. In common usage, and in this book, the eccentric is called the cam. As with
other kinematic elements, cam pairs also include mechanisms that produce three-
dimensional motion. This introduction to the analysis of cam pairs will be restricted
to what are called disk cams, rotating eccentrics that cause motion of a follower. These
are the kind of cams that are used in modern overhead-cam internal combustion
engines. An eccentric disk cam attached to the cam shaft drives the motion of each
valve stem, opening and closing the intake and exhaust valves. A double overhead-cam
system will have two cam shafts, one to operate intake valves and the other to operate
exhaust valves.

The systematic analysis of cam pairs is of fairly recent origin. Reuleaux barely
mentions cams, and those he does are not the ones the modern engineer would think
of first.

Figure 7.11 shows a cam pair with a translating offset roller follower. It introduces
some standard cam nomenclature and some notation to be used later. A translating
follower means that the follower moves in a straight line, restrained by a guide. A
pivoting follower is called an oscillating follower. The line of motion of the offset fol-
lower does not pass through the rotation axis of the cam; that of a centered follower
does. The trace point is a fixed point on the follower, the motion of which is to be

FIGURE 7.11  Definition sketch for a translating roller follower cam pair.
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found in an analysis problem and specified in a synthesis problem. For a roller
follower, the rotation axis C of the roller is appropriate. The projection of the shape
of the cam onto the plane, the curves plotted in Figures 7.14, 7.16, and 7.18-7. 20,
is called the cam profile. The The pressure angle ¢ is the angle between the normal to the
cam profile and the line drawn through the cam axis.

The cam shown in Figure 7.11 has as a section of its profile a segment of a circle
centered on the rotation axis. When that section is under the follower, it will not move;
that is, it dwells. For the cam shown, the output dwells over more than half the rotation
period of the cam. This cam is very nearly a circle with a single lobe, one region where
the cam profile projects beyond the minimum circle. The latter is the largest circle
centered on the rotation axis that can be drawn inside the cam profile.

Two coordinate systems (at least) are required to describe the behavior of a cam
palr “One is attached to the rotating cam (the cam), and the other is fixed in_space.
“Some authors (e. g., Chakraborty and Dhande 1977) introduce a third system attached
to the follower, but that will not be necessary in this text. I show the two systems in
Figure 7.11: the cam-fixed system (x¢, yc) and the space-fixed system (x,y). The cam-
fixed system has its origin at the rotation axis of the cam. The cam shown is symmetric,
and I have taken the y¢ axis to pass through the ‘‘highest™ point on the lobe. The
cylindrical coordinate system fixed in the cam frame is (p,$), so that the cam proﬁle
is defined by p = p(¢), where the angle ¢ is measured counterclockwise from the x¢

axis. The comp]ex material vector from this axis to any point on the cam is given by
Zc = p(¢) exp(i9) (7.18)

in the cam frame of reference. !

The two systems have the same orientation at 7 = 0. During rotation of the cam,
the angle between the xc and x axes is ¢r. The vector z, representing the location of
a point on the cam profile with respect tq the space-fixed system is, by inspection (use
the parallelogram rule for adding vectors), @ e e

=~

il et Z=a+zc=a+ p(@ — wt) exp(ih) (7.19)
where I have evaluated z ¢ at an arbitrary point in the space-fixed system, designated
by the space-fixed angle 6. In particular, the he vector to the contact point P can be written

in the two systems as

PR P k4
et T2 Zep = p(Op — |wi) exp(ifp ~ wi)
- N “ r S r (7.20)
iz LU T Zp =a + p(Gp — wt) exp(ifp)

Note that the contact point is not negessarily on the line of motion. This is a key
dlfﬁculty of cam analysis and synthesi3. The angle 6 ), hence ¢ and p(¢), are all

; ~ 2o unknown. As the radius of the roller degreases, the contact point approaches the line

_of motion. The limit is the knife-edge follower. Such a follower is not practical, pri-

marlly because wear would quickly dull the knifelike edge. It is convenient for anal-
ysis, however, and, in many systems, the approximation introduced by assuming a
knife-edge follower is a good one.
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Methods of analy31s for finding 6, ¢, and p as functions of time include the work
of Raven (1959), who reduced general cam-pair syntheses to exercises in complex-
variable arithmetic. An alternative vector approach is given in Chapter 2 of Chak-
raborty and Dhande’s monograph (1977), which is an excellent treatise on the kine-
matics of cams. It covers many applications beyond the scope of this text, including
three-dimensional cam pairs. A third method of analysis, more in keeping with the
techniques used elsewhere in this book, will be introduced subsequently.

The Translating Roller Follower R

The illustrations so far have shown translating roller followers. I will begin with a dis-
cussion of these and then look at oscillating followers. Translating flat followers can
be analyzed using the methods explored for roller followers. This is relegated to the
Exercise section.

Before examining the general case, it is instructive to look at the simplest case:
that for which there is no offset and for which the roller radius is small enough to be
approximated as a knife-edge follower. Such a situation is illustrated in Figure 7.12.
In this case, § = w/2, so that ¢ = 7/2 — wt. As drawn, wt < 0. The vector to point
P is given in the space-fixed system as

/

zp = p(w/2 — wi) exp(in/2) = ip(7/2 — wi) (7.21)
and the position of the trace point, the axis of the roller, is given by x = 0 and

y=h=r;+ p(@/2 — wi) (7.22)

v

Xc

FIGURE 7.12  The centered translating
roller follower with vanishingly small r3.
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The velocity and acceleration of the follower are then given by direct differentiat_i_on
of Equation (7.22): - o

Ve = h —wp'(m/2 — wt)

. (7.23)
ac =h = w?p"(n/2 — wi)

where the dot denotes differentiation with respect to time and the prime differentiation
with respect to argument. (5> ) : '
" General position analysis for both r3 and a nonzero can be addressed using com-
plex variables and the loop-closure equation. This leads to a complex transcendental
equation for the position of the contact point. This equation can be solved using any
of the numerical methods of successive approximation. I will give a program using the
Newton-Raphson technique introduced in Chapter 5.

Figure 7.13 is a schematic redrawing of Figure 7.11, with complex vectors needed
to find a loop-closure equation given. For any fixed moment in time, the loop-closure
equation is

e nn Uil g+ p(d)e® — rpel® —~ ih = 0 (7.24)
o> (P)

The two angles 6 and 6; are connected by the cam profile. The radius vector of a

circle tangent to any curve is perpendicular to the curve at the point of tangency. The

Tadius vector, here z3, is (anti)parallel to the (outward) normal. The normal vector to

any point on the cam profile can be calculated directly from the equation of the cam

profile, O o dnp S T
_ e -
Fomsis € mp VF Lo Tap=p@ =0 _, ;. .7 con ol (1.25)
) o T s . e . .
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: R FIGURE 7.13 A set of vectors appropriate for
a analyzing the offset translating roller follower
cam pair.
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The gradient of the profile is normal to the profile. Dividing by the magnitude of the
gradient gives the unit normal

' ;o
€ _ P ey :_ei03:n o
JI+p72 VI + p72

n=

, o — A - . . -,
: noeite = P T g ‘

JI+p2 T v

Recall that the complex representations of the two unit vectors are ¢’ and /e, respec-
tively. These have been used to write the complex unit normal n. The loop-closure
equation can then be written in terms of the two unknowns 8 and 4 as

at(orr ip'_1>ei9 ih =0 (7.27)
3 = ' 5
\ VI +p72 Koo e [

3

where the radius vector p and its derivative are to be evaluated at ¢ = § — wt. Taking

the real part of this equation eliminates # and leaves a single transcendental equation

for 6:

(a+pcos8)I +p% +ry(cos6 — p'sinb) = F@O) =0  (7.28)

where, again, the radius and its derivative are to be evaluated at 6 — wt.
This equation can be solved approximately by assuming that

p(¢) =1, + 6(d)

(7.29)
6 =0, + 660
where cos 8y = —alr,, r, denotes the radius of the minimum circle (any other *‘typ-
ical”’ radius of the cam can be used), and r;, as before, denotes the radius of the
roller. Substitution of this approximation into Equation (7.28) and linearizing will pro-
duce an equation for 86 in terms of &(¢).

60 = = — + — csc (7.30)

r, do r;,2 0

Alternatively, Equation (7.28) can also be solved numerically using the Newton-

Raphson techniques introduced in Chapter 5. This method is productive and relatively

fast and robust. The following program works this for cams for which an analytic
expression for the cam profile can be written. Profiles of the form

p(®) =r, + r,8(d) (7.31)
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where r;, denotes the minimum radius of the cam, r, the maximum height from the

\mmlmum radius, and g(¢) a periodic function of maximum amplitude unity, are

implicitly used in the program. Other two-parameter families are possible, of course.
One will appear in the Exercise section at the end of the chapter.

PROGRAM 7.1:
CAM ANALYSIS

function rho (r,, r,,, ¢)
function rhol (r,, r,, ¢)
function rho2 (7, r,, ¢)

function F (0, a, w?)
¢ =0 — wt
A = sqrt(rho(¢)*rho(¢) + rhol(¢)*rhol (¢))
x1 = a + rhol(¢)*cos(§)
x2 = r3*(rho(¢)*cos(f) — rhol (¢)*sin(6))
F = x1*A + x2

end

function F1 (8, a, w1)
¢ =0 — wt
A = sqrt(rho(¢)*rho(¢) + rhol(¢)*rhol (¢))
x1 =rhol(¢)*cos(6) — rho(¢)*sin(8)
= (a + rhol(¢)*cos(8))*(rhol(¢) + rho2(¢))
x3 = r3*(—rho(¢)*sin(6) + rho2(¢)*sin(9) + 2rhol (¢)*cos(6))
F1 = xI*A + x2/A + x3

end AN
1

enter (a, ry, ry, w, ty, dt, nt)
for j = 0 to nr do

t =ty + j*dt

df =1

0 = COS“'(—a/(rb + r3))
while [df| > limit do
6 = —F(0)/F1(6)

6 =6+do
repeat the loop
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repeat the loop
write results

end

To use Program 7.1, the user must supply the three functions rho, rhol, and rho2.
These are each two parameter (r,, r,) analytic expressions, respectively, for the
radius as a function of the angle ¢ and its first two derivatives with respect to ¢. The
functions F and F1 represent Equation (7.28) and its derivative with respect to 8. The
initial guess for @ is the correct value when p = r,.

Behavior of a One-Lobe Cam

To explore the behavior of cams, consider the behavior of a simple one-lobe cam, for
which the cam profile can be written

p(¢) = r, + r,sin® ¢ (7.32)

The two parameters r;, and r), are in themselves not important. Their ratio and, indeed,
the ratios of r3 and a to r, are the important geometric parameters. If two cams are
geometrically similar, their kinematic behavior will be the same. I will choose 10 as
an arbitrary magnitude of r, and will scale all the other geometric parameters as 10
times the relevant ratio. The figures in this section are all based on the same scaling.
Where minimum circles are shown, their diameters are 20 in the dimensionless system
appropriate for understanding kinematic relationships.

Figure 7.14a shows such a one-lobed cam (rotated 90° to the right so that it will
fit better on the page) and the behavior of the trace point as a function of time during
one rotation, assuming a translating roller follower of radius 2 and zero offset. The
circle in the figure is the minimum circle, of radius 10. The maximum height of
the lobe is 5; that is, r, = 5. As is easily seen, the output dwells over half the cam
cycle.

Figure 7.15 shows the cam, set vertically, with follower rollers of r; = 1, 2, 5,
and 10. Figure 7.16 shows the output curves for the new cases, r; = 1, 5, and 10,
reading from the top to the bottom. There is very little difference in the nondwelling
part of the response. The absolute value of the height increases with the size of r;.

Figure 7.17 shows a set of rollers, all of radius 2, at offsetsa = 0, 2, 5, and 10.
Figure 7.18 shows the output curves for the nonzero offset cases. A nonzero offset
Jeads to asymmetric follower output, increasing with the size of the offset. The differ-
ential lift also increases with offset. Although forces on the cam and follower are not
discussed in this book, it is worth noting that the force between the cam and its follower
acts, in the absence of significant friction, along the perpendicular. This means that
for followers with extreme offset, such as the system shown with a = 10, the force
on the follower is often nearly perpendicular to the line of motion of the cam. This is
bad design, putting a large force on the cam and on the follower guides.
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FIGURE 7.14  The one-lobe cam pair: (a) the eccentric, rotated 90° from its zero position;
(b) trace point height as a function of cam angle for one rotation.

- ‘;( , o
Zo(a R

FIGURE 7.15 The one-lobe cam with
four centered follower rollers: r3/r, = 0.1,
0.2, 0.5, and 1.0.

~ A T /)
A Four-Lobe Cam /m//é Y f /‘/

Cams with more than one lobe are also possible. Until recently, most automobiles had
distributors. The central element of a distributor is a cam with as many lobes as the
car has cylinders. When the lobe is_under the follower, the electrical connection

between the coil and the spark plugs is broken, and the coil can *‘charge.’”” When the
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FIGURE 7.16  Trace point height

ﬂ\’% &, : ‘ of the roller follower for r3/r, =
°°°% s B 0.1, 0.5, and 1.0, reading from top
oo v to bottom.
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FIGURE 7.17 The one-lobe

cam with four follower rollers:

L r3/ry = 0.2 and alr, = 0, 0.2,
t=6.28 0.5, and 1.0.

follower is between lobes, the connection is made, and current is sent to the appropriate
cylinder. Figure 7.19a shows a four-lobe cam, a simple model of the cam in the
distributor of a four-cylinder automobile. The equation used to generate this cam is

p(¢) = ry, + ry cos?2(2¢) (7.33)

with r, = 10 and r, = 1. Figure 7.19b shows the response of the follower point to
this cam. (In an automobile distributor, the follower is an oscillating follower, to be
discussed later. The illustrative difference is not important.) The output for an automo-
bile distributor is a little different in that inward travel of the follower is restricted and
the “‘valleys”’ are flat-bottomed. Figure 7.20 shows the cam and its response when r;,
is increased to 5.
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FIGURE 7.19 A four-lobe cam and the trace point motion for one rotation of the eccentric:

rh/rb = Q.1
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t=6.28

FIGURE 7.20 A four-lobe cam and the trace point motion for one rotation of the eccentric:
rh/rb = 0.5.

Ye
Xc W
4 C
(@

FIGURE 7.21 A one-lobe cam with an oscillating flat follower: (a) a sketch of the cam pair;
(b) a set of link variables.

(b)
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The Oscillating Follower , i+ ~ T LW’ o /0 e o] .
Figure 7.21a shows a flat oscillating follower, and Figure 7.21b a set of loop-closure
variables. Geometry requires that the flat follower be perpendicular to the cam profile
at the contact point, so that the loop-closure equation, deliberately written to resemble
the four-bar-linkage loop-closure equations examined in earlier chapters, can be
manipulated using the complex unit normal n which, the reader will recall, is a function
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of 6,. The two loop-closure variables z; and z, are fixed and known, z, is the same
as the varlable_ 2Zp introduced in the preceding section, and z3 represents the pivoting

follower. Its length changes, as does the length of z,. Note, however, that the the changes

in length and orientation of gz‘gnd Z3 are related.
The loop-closure equation is

Zp+tzp+tz3+24=0
(7.34)
Zl+22+r3n+24=0

The two unknowns in Equation (7.34) are 6, and r;y. The latter can be eliminated by
multlplymg Equation (7.34) by n*, the complex conjugate of the unit normal. The
imaginary part of the resulting equation will not involve r; and can be solved for 0,
usmg numerical techniques. The equatlon and its imaginary part are

N

3. ‘ . .
=< —rie” % 4+ ry (0, - wyt)e! @70 4 2 4 jreTit =

(7.35)
EEARCTI R VP risin @, + r,(6, — wyt) sin@, — 6,) — rycos 6, = 0 = F(8,)

The function F(6,) and its first derivative can be inserted into Program 7.1, and the
resulting code can be used to find the behavior of the flat oscillating follower cam. This
is left as an exercise for the reader.

The power of the complex-variable methods becomes apparent as the system to be
analyzed becomes more complex. Figure 7.22a shows an oscillating roller follower,
and Figure 7.22b is a schematic sketch designed to make the individual vectors in the
loop-closure equatlon dlstmct In this diagram, z, and z; z3 correspond to the cam and
roller vectors , 24 and g 424 are two vectors fixed in the follower, and these have a con-
stant ratio q,, as shown. Finally, 2y and z5 are fixed i in the frame Zs correspondmg
to z, in Figiire 7.21b. T

As in the translating roller follower, z; must be parallel to the normal n. This can
be used to write the loop-closure equation

2y + 2 + rsn + G424 + 24 + s = 0 (736)

Wwhere z, z5, and g, are known fixed complex numbers. T&omplex number 7 is a
functlon of 6,, so that this complex equatlon contains the two unknowns 6, and 0.
“The difficulty is separating the two unknowns so that some function F (6;) can be
written. To do this, write the loop-closure equation with all terms containing 6, on the
right-hand side,

21t 2, tr3n +Zs=((I4+ Dz,
. e

Agy
and multiply both sides by its complex conjugate: ’%

r12+r22 + "32 + r52 - TIZZ* - Il; — irszz* + jrszz

—rirsn = rirsn® — z22%rn — zr3n® + irgran — irsrsn*=(q.q.* + Dr?
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FIGURE 7.22 A one-lobe cam with an oscillating roller follower: (a) a sketch of the cam
pair; (b) a set of link variables.

This equation is a function of 6, only, so that the function to be set equal to zero is

—r1zy* = rizy = irsy® +irsz, — ryrsn = ryran®
—2,¥rn — zyrn® 4 irsrsn — irsrsn® + rt + )t + ry? + rst — (qagi+ Drg
=0 = F(by)
(7.37)

EXERCISES

1. Consider the gear train shown in Figure 7.4:
a. Derive Equation (7.7).

b. If w, = 18 rad/s, find w5, assuming r, = 10 mm and r; = 40 mm.

V' 2. Consider the system shown in Figure 7.6. Specify the rotation rate of links 1 and

2. (This is equivalent to grounding one of these links and specifying the rotation
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10.

11.
12.

rate of the other.) Write the velocity of point P and the velocities of links 2 and
3 with respect to P. Show that the sum of the relative velocity of each gear with
the velocity of P gives the absolute velocity of the gear.

. Applying the rules of Equation (7.3), show that the material motion of link 2 in

Figure 7.6b is zero, as claimed in the text.

In Figure 7.6¢, assume r, = 100 mm and r; = 300 mm. Find w, if w; = —15
rad/s.

. Take the system analyzed in Example 7.4, and repeat the analysis with link 1

grounded instead of link 5. Assume the system to be driven through the sun gear,
link 2, as in the example.

. Consider the four-link gear train shown here. Suppose the arm to rotate at 6 rad/s,

and find the rotation rate of the two outside gears, assuming that r, = 10 mm,
ry = 35 mm, and r, = 25 mm.

(S

2

. In the system drawn here, ground link 3, and let the arm rotate at —7 rad/s. Find

the rotation rates of the remaining gears.

Let the arm be grounded in the illustration, and assume link 2 to rotate at 45 rpm.
Find the remaining rotation rates.

Discuss the changes necessary to analyze a flat translating follower. Consider both
the cases of an infinitely wide follower and a follower of finite width.

Write the pseudocode required to create the functions F and F1 necessary to con-
vert Program 7.1 to a program capable of analyzing a flat oscillating follower
based on Equation (7.35).

Repeat Exercise 10 for the function given in Equation (7.37).

Implement Program 7.1, and use it to evaluate a six-lobe cam.
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Chapter 8

Dimensional Synthesis
of Four-Link Mechanisms

Mechanism synthesis is classified according to the output motion desired. If the output
motion is to be a specified function of the input motion, the task is called function
generation. 1If the output motion requires a point on the mechanism to trace a particular
path, the task is called path generation. Finally, if a finite object is required to execute
a specified motion, the task is called motion generation.

For each of these synthesis tasks—for any synthesis task—there are two stages in
the synthesis: type synthesis and dimensional synthesis. Type synthesis is the choice of
type of mechanism, including the number of elements. The choice of the number of
elements is sometimes considered separately as number synthesis. General type syn-
thesis is beyond the scope of this text. A recent thorough review of the subject has been
given by Olson et al. (1985).

Dimensional synthesis is the task of choosing the dimensions of the elements, once
a specific linkage type has been chosen. This task, at least for simpler linkages, can
be reduced to an analytic procedure, hence to a computerizable algorithm. A word of
warning: It will be shown that synthesis is an approximate task. The linkage synthe-
sized will satisfy specified conditions at isolated positions. There is no guarantee that
the linkage can move continuously between the design points without disassembly.

Sets of algorithms and generalized computer programs will be constructed below.
First, it is useful to examine some simple cases, which can be done *‘by inspection.’’
Begin by considering the classical problem of changing simple rotation into reciprocal
motion, for example, asking that a point on a mechanism oscillate between two points
in space separated by 100 mm. Figure 8.1 shows three possible types of mechanisms
that can perform this task: in-line slider crank, offset slider crank, and crank rocker.
The last is included for completeness. The motion is not straight-line motion, and
usually reciprocal motion is taken to imply straight-line motion. [The production of
unguided straight-line motion has long been taken as a challenge by kinematicians.
Watt said of his straight-line mechanism, ‘“. . . I am more proud of the paralel [sic]
motion than any mechanical invention I have ever made.”’ (Tann 1981, p. 61). Many
of Chebyshev’s efforts were directed toward straight-line motion (Chebyshev 1861,
1882).] A more recent summary of straight-line mechanisms has been given by Tesar
and Vidosic (1965).

135
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FIGURE 8.1 Three mechanisms to produce one-dimensional displacement: (a) an in-line
slider crank; (b) an offset slider crank; (c) a crank rocker.

All three linkages are shown with the output link at midrange. The observant
reader will note that the crank angle is different for each sﬁt_e—nTTﬁ'us 1s an example
of timing, which will be discussed in context following further discussion of synthesis.

For the first case, it is clear that the length of the crank must be 50 mm, so that
the difference between the extreme positions will correspond to the desired d displace-
_ment of 100 mm. The coupler is only required to be longer than the crank. The coupler
length determines the separation between the two ground points, or vice versa.

For the offset slider crank, the crank and the coupler lengths can be found by con-

sidering the linkage at its two extreme positions. If the vertical offset is H and the

horlzontal offset L, then the Pythagorean theorem applled in_the extreme positions _
gives gives the sum and difference of the crank and coupl‘e_[‘_lgggs_tlm_as a functlon of the loca-
tion of the origin of the crank:

(r + r3)? = (L +d)> + H?

(ry — r3)* = (L — d)? + H? 8.1)
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Exactly the same analysis applies to the crank-rocker mechanism of Figure 8.1c.
The equations are (8.1) with L = 0.

For the example given, with the stroke required to be 100 mm, the crank and
coupler lengths in the three cases as drawn are

ry = 50, ry = 183.3

r 482, rs = 190.5

r, =435, r;=2103
The stroke is always greater than, or equal to, twice the crank length.

Flgure 8.2 shows the two extreme positions of an offset slider-crank mechanism.
The crank rotation is positive (counterclockwise). The change in crank angle in going
from the advanced position (A) to the return position (R) is less than that going from
R to A. If the crank turns at a uniform rate, as is usual, the time taken for the slider
to return is less than that to advance. This is an elementary example of a quick-return
mechanism. The ratio of time to advance to time to return is called the timing ratio.
For Figure 8.2, it is greater than unity. It clearly depends on the geometry of the link-

‘age. The nature of the dependence will be explored in the context of the general four-

element synthesis problem. If the direction of crank rotation is reversed, the timing

ratio is inverted.

¢/
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FIGURE 8.2 An offset slider crank. For counterclockwise rotation, the return angle is the
smaller angle between A and R, and the advance angle is the larger. This uneven timing gives
a quick-return mechanism.
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ANALYTIC SYNTHESIS

Techniques of mechanism analysis were developed in great detail for four-link mech-
anisms. The idea was to introduce concepts, not to generate vast numbers of rules. The
advent of digital computers and commercially available analysis and synthesis codes
means that one does not need to work out example after example. On the other hand,
it is crucial to understand the concepts of analysis and synthesis so that one can under-
stand what the codes do, what one can expect them to do, and how they can generate
incorrect results. The remainder of this chapter is devoted to an understanding of four-
link synthesis using a direct analytic method.

The Slider Crank with Timing

Consider the offset slider crank. Figure 8.3 shows a com plex vector skeleton of such

a mechanism. The origin O has been chosen as shown and the convention that Zp1
the crank and z the coupler has been maintained. The loop-closure equation can be

written in the Usual general form

Zl+Zz+Z3+Z4=0 (82)

and the coordinate system allows me to rewrite this in a more instructive form:

rg = irl + r2ei02 + r3ei03 (83)

The synthesis task is to find r, r;, r3 such that r, takes on desired values for
given values of 9,. How many. such pairs can be specified? Equation (8.3) represents
two real equations. If 6, and r, are specified, then there are four remaining unknowns:
ry, r», r3, and 65. I have a double redundancy If I add a second point, I add two
equations [Equation (8.3) with different values for r, and 02] and one unknown, the
value of ;3 at the new position. Thus, the new system has four equations and five
unknowns, a single redundancy. Addmg a third point leads to six equations in six
unknowns, a complete (nonlinear) set of equations and unknowns.

If the initial position of the crank is not important, then I do not specify the initial
value of 6§, but merely specify the changes in 8, ¢y, the _a_ngl_c__ that the crank rotates
in going from the first (initial) position to the second posmon and ¢, the angle the
crank rotates in going from the first to the third position. The number of unknowns
is increased by 1 (the initial crank angle), and I can specify one more point in the cycle
if I choose.

The usual synthesis problem is to specify the length of the stroke and the timing
ratio. . Recall that the timing ratio is the ratio of the time taken to advance the slider
10 that taken to return it. For the usual case of uniform crank rotation, this is equal

to the change in 6, during the advance stroke divided by that during the return stroke.
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7 FIGURE 8.3 A four-complex-number repre-
sentation of the offset slider crank. (While the
< mechanism can be represented by three vectors,

0 Z4 P it is more convenient to use four.)

In Figure 8.2, the timing ratio would be the change in 6, as the crank tip goes from
R to A, divided by the change in 0, as the crank tip goes from A back to R. To solve
this synthesis problem, examine the loop-closure equations for the _advanced and
retarded positions. (. i

v ' v rs -~
bl 2\l — r— —2) — 240 = l (8.4)
) ,

{

¢ _)’ [. > h "3\ i«
{0 B - 220 ] + — )e
r

where I have used the antiparallelism and parallelism of the crank and coupler in the
two extreme positions. Angle « is the advancing angle. The timing ratio is given by

—21 — I4 .- (8.5)
‘\ L

(03

B=(27r—a)

(8.6)

so that o = 2wB/(8 + 1).

Equations (8.4) and (8.5) represent four equations in five unknowns, 25, H, L,
and r3/r;. They are not linear equations, and the solution process is not immediately
obvious. Begin by multiplying Equation (8.5) by e~i@ and adding the two equations.
This allows the elimination of z,q in terms of the other variables,

20 = —1(1 + €7z + 240 + e7*24]/2 (8.7)

Substitution back into Equation (8.4) allows elimination of the ratio ry/7,,
ry/ry = [220 + 21 + 240)/220 (8.8)
Because Equation (8.8) is a complex equation, the value returned for the ratio may

be complex. Thus, a solvability condition must be imposed:_ the imaginary part of the
right-hand side of Equation (8.8) must be zero. The imaginary part is proportional to
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the product of the numerator and the complex conjugate of the denominator. After

some algebra, the solvability condition becomes Gz
e T [ Al JR. G e
-

sin a(H? + L? — d?) — 2Hd cos @ = 0 8.9

where H and L are defined in Figure 8.2 and d is the half-stroke of the slider. It can
be conveniently rewritten in dimensionless form,

e (H/d)* — 2 cot a(H/d) + (LId)? — 1 =0 (8.10)
0 e R —

L/d must be greater than unity; otherwise, the slider would be required to pass
beneath the crank pivot point, and that is impossible. Equation (8.10) can be viewed
as a quadratic equation determining the ratio H/d as a function of L/d and «. Its con-
stant term, (L/d)? — 1, is greater than zero, so that there will be real roots only if the
linear term is negative. Therefore, cot o must be greater than zero.
~ Ttis sufficient to consider timing ratios greater than unity. As shown earlier, timing
ratios less than unity can be obtained by symmetry. When 8 > 1, the angle « is
between 7 and 2. For cot « to be positive, a must be less than 37/2 and the timing
ratio less than 3. Finally, the discriminant for Equation (8.10) will be positive if and
only if (L/d)? = 1 =< cot? . If the equality holds, H/d = cot . Otherwise, there
are two values of H/d, one larger and one smaller than cot a.

Synthesis proceeds as follows. Choose the stroke 2d and the timing ratio 8 < 3.
Find «. Set L/d = [1 + cot? a]*"and H/d = cot a. From these, find z,, 249, and
241 Use these to find z,4, and use Equation (8.8) to find r3. This procedure can be
written out as a generic code:

- o

L2 RS bt Lol

Tl - RN ""“:'d} ;>/’ '/('/'i’ \ \/, . ~.“f~,"')‘h
S
PROGRAM 8.1: X oEome
OFFSET SLIDER CRANK WITH TIMING
enter (d, ();

o =28x/[1 + B];
! L =d[1 + cot? a]*;

H = d cot a;

zp =iH;,  z40 = —(L —d); z4 = —(L + d);

220 = —[(1 + e7®)z; + z49 + e7i0z4]/2;

rylry = (220 + 21 + 240)/220;
ry = lzaol; 13 = (r3iry)ry;

print (H, L, ry, r3, 25);
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EXAMPLE 8.1

Let d = 50 mm, and let the timing ratio be 2. Following the program gives, in
succession,

o = 47/3
cot a = 1/4/3 = 0.5774
L

57.7350

H = 28.8700

250 = —10.5700 + 39.4350
ry = 40.8270

ry = 70.7164

Figure 8.4a shows the mechanism; Figures 8.4b and 8.4c show its behavior.

The detailed behavior of the linkage just synthesized can be examined using the
position analysis program developed in Chapter 5.

(a) (b)

(©)

FIGURE 8.4  The solution to Example 8.1: (a) a sketch of the mechanism; (b) a cartoon of

several positions of the mechanism; (c) position of the slider as a function of time for a single
cycle.
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FIGURE 8.5 A four-bar mechanism. Note
the two dyad vectors w, and w4. These will be
used in dyad synthesis.

Path Synthesis Using Dyads: The Direct Method

Path _generation is the most general of the four-bar synthesis tasks. The other two,
function generation and motion generation, can be viewed as specializations of path
_generatlon To show this, consider the linkage shown in Figure 8.5. The task of path
generation is to choose the link lengths such that point P follows a specified path. Func-

tion generation requ1res that 6, approx:matc a given functlon of 02 ThlS is a Wgemal

path isa 51mp1e cxrcular arc. Motlon generatlon reqmres that a two-dimensional obje object
take on a specific set of orientations; that is, not only must the path of one point on
‘the object be spemﬂed but the orientation of the object must be specnf' ed as well. If
the object to be moved is attached to the coupler, this is equlvalent to specifying the
path that P follows, as well as the coupler angle. Thu Thus both function generation and
motion generation are restrlcted cases of path generatlon Mﬂ with a thorough
exploratxon of the most ggnera_l__case path generation, and then use these results to help
with function and motion generation.

The fundamental tool for analytic depiction of linkages is the loop-closure equa-
tion. Referring to Figure 8.5 shows that I have two possible ways of writing the loop-

closure equation:

3+ +z3+24=0 (8.11a)

Tt wytwgt+24=0 (8.11b)

Both of these suffer from the fact that the complex number p associated with point P
does not appear at all in the first equation and does not appear explicitly in the second.
This makes the use of the first equatlon impossible and the second awkward. Another
approach is necessary and common.

The loop-closure equation can be split into two parts, each of which involves p
explicitly. The first part is the loop ABP and the second the loop DAPC. The corre-
sponding loop-closure equations are ' -
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FIGURE 8.6  The rwo dyads pointing to the syn-
thesis point P: z; + wy and —(z4 + wy).

Z+w, —p=20 (8.12a)
2| +p+W4+Z4=O (812b)

The sum of these two equations gives Equation (8.11b).

The twoi:lriﬂj(‘bpen chains, z, + w, and —(z4 + wy), are two-degree-of-freedom
open chains, usually called dyads in the kinematic literature. In Figure 8.6, the dyads
are more obvious. If the dyads were independent, they could each place point P in any
location (within reach), and the synthesis problem would be trivial. It is the limitations
imposed by requiring them to be assembled as shown in Figure 8.5 that restricts the
apparent freedom of the dyads.

Unless the path to be followed happens to be a coupler curve, following the curve
exactly is not possible. The usual procedure is to ask that P match the path exactly at
a number of fixed positions; and the question arises: How many points are possible?
To answer the question, it is necessary to count equations and variables.

A sequence of points, Py, P, . . ., P;, with their associated complex representa-
tions, py, py, . . ., pj, will be specified. They are considered to be known quantities.
Let j denote the general term in either sequence. The dyad equations for the general
point are then T

2+ wy; —p;=0 (8.13a)
ot ptwgt+z4=0 (8.13b)

where T have added a subscript j to all the variables that change. Because z, is the
frame member, it does not change and it takes no subscript. T

It takes 10 variables to describe the linkage. The choice of these 10 is not unique.
It is only important to note that only three of these change uniquely when the linkage
moves: all the lengths remain unchanged, as does the frame angle 6,. Two more vari-
ables are necessary to locate the linkage with respect to the set of points. These vari-
ables are also invariant when the linkage executes its motion. There are thus 9 + 3N
variables available if N linkage positions are specified, and there are 4N real equations.
Equating these shows that the maximum number of points that can be specified is 9.
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Nine points are a lot of points. The full set of equations is then 36 nonlinear
equations in 36 variables. This can be reduced somewhat, and it is common to do so
by subtracting the initial position from each of the other positions to produce the
reduced set of equations

&
(% — 1)zy9 + (€% — Dwy = —p; + Po (8.14a)

(€% — Dwyg + (e — Dzao = pj — Po (8.14b)

where I have (1) introduced the rotations ¢;;, such that 6;; = ;5 + ¢ fori =2, 3,
4, so that

z; = ez
(2) noted that the frame link z; does not change and so cancels from the two equations
(8.14b); and (3) noted that the rotations of w, and w, are both equal to ¢3;, as both
w, and w, differ from z3 by constant factors.

Elimination of z, reduces the full set to a 32 X 32 problem, still too large to be
instructive. Rather than work down from the general case, I will begin by considering
the case for three points, for which the reduced problem has only two complex equa-
tions for each dyad. o

The three-point problem in its reduced form has four complex constraint equa-
tions: (8.14a) with j = 1 and j = 2, and (8.14b) with j = 1 and j = 2. These are
equivalent to eight real equations and serve to determine eight unknowns. Available
unknowns aré oy N e

ra, I3, T, 020, 030, 040, @y 4, D215 D22, B31, P32, Da1, P22

The first eight of these determine the geometry of the linkage and its initial orientation.
They can be written as four complex unknowns, 220, W20, 240, W405 and the four com-
plex equations can be solved directly, just as if they were real.

A Let 1 — ei"’ff = a;. Then the N = 3 equations can be written compactly in

_[aﬂ 031} {Zzo} - {Pl - Po} (8.15a)
ar asn W20 P2 — Po

matrix notation
{041 031} izmg - {Pl - Po} (8.15b)
Ay Az Wy P2 — Po

the solutions to which are also easily written in matrix notation

z ay —a -
{ 20} —lanasn — 022031]_]{ 2 3'} {pl Po} (8.16a)
W20

I

—an az, P2 — Po
z a;, —a —
{ “0} = lamaxn - a42a3|]“[ 32 3'} {p‘ p"} (8.16b)
Wao —ag ay P2 — Po
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It is not obvious how one is to choose the six rotations ¢;;. On the face of it, any
set will do. The question is clarified by working a pair of examples, two different sets
of rotation angles for the same three path points.

EXAMPLE 8.2a

Find a four-bar linkage of the type shown in Figure 8.5 such that point P passes
through the following three points:

po = 3.5543 + 4.7523i,  p, = 3.7492 + 5.9084i,  py = 2.8085 + 5.8478i

Choose the rotations to be

by = 1.0472, ¢y = —0.2660, b4 = —0.0752
by = 17453, &3 = —0.3669,  ¢u = 0.0675

Erom these, one can calculate the six distinct matrix coefficients:

ay = 0.5000 — 0.8667i,  ay = 0.1377 — 0.9848i
a3 = 0.0352 — 0.2629i,  ax = 0.0666 + 0.3587i

s = 0.0028 + 0.0751i,  ay = 0.0023 — 0.0674i

Substitution of these into Equations (8.16a) and (8.16b) leads to the initial dyads

290 = 2.0000 — 0.0003i
wao = 1.5565 + 4.7534i
Z40 = 3.0636 — 6.2936i
wa = 3.3836 + 1.5429i

The frame link can be found from Equation (8.11b),

z; = —10.0015 — 0.0016{

The resulting linkage is shown in Figure 8.7a. Point P is shown at Py and, as the
reader can verify, pbiht A is very nearly at the origin [(— 0.0022, —0.0008)] and the
other frame point D is very close to the x axis [(9.9993, 0.0008)]. The linkage satisfies
the Grashof criterion, and its coupler curve can be drawn. The coupler curve is shown
in Figure 8.7b, in which the circled points are the initial points for which the linkage
was synthesized. It seems a quite unexceptional linkage. Is it a coincidence that A4 is
near the origin? Is the small offset from the origin a consequence of some round-off
error? What does the origin mean? To help answer these questions, another example
will be useful.
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4
W,
(b)

FIGURE 8.7 The solution to Example 8.2a: (a) the linkage shown in its initial position; (b)
the coupler curve.

EXAMPLE 8.2b

Repeat the synthesis in Example 8.2a, changing only the assumed rotations. Let the
new rotations be

¢2| = 07854, ¢3l = ‘04000, ¢41 = 01000
¢22 = 15078, ¢32 = _06000, ¢42 = 02000

From these, one can calculate the six distinct matrix coefficients:

az = 0.2929 - 0.7071i,  a, = 1.0000 ~ 1.0000;
a3 = 0.0789 + 0.3894i, as, = 0.1747 + 0.5646i
aq = 0.0050 — 0.0998i, a,, = 0.0199 — 0.1987;

Substitution of these into Equations (8.16a) and (8.16b) leads to the initial dyads

220 = 1.8793 + 0.6216i
wyp = ~0.6154 + 2.9179;
2 = —1.0930 — 23.4423;
weo = 4.1417 — 5.6848i

The frame link can be found from Equation (8.11b),

21 = —4.3126 + 25.5876i



Four-Link Mechanisms 147

D (b)
@)

FIGURE 8.8 The solution to Example 8.2b: (a) the linkage shown in its initial position; (b)
the coupler curve.

The resulting linkage is shown in Figure 8.8a, which is drawn to the same scale
as Figure 8.7a. As in Figure 8.7a, point P is shown at py. This, too, is a Grashof
linkage, and its coupler curve is shown in Figure 8.8b, drawn to the same scale as
Figure 8.7b.

These two linkages appear radically different. The coupler shapes are different.
The coupler curves are different. Most striking is the different location of the frame
points A4 [(2.2904, 1.2128)] and D [(6.6030, —24.3748)] with respect to the precision
points p;. Evidently, the result is very sensitive to the choice of rotation angles.

Whereas this is true, the real problem arises in reducing the set of equations (8.13)
to the set (8.14). When the equations for the zero position are subtracted from the equa-
tions for the other positions, this refers everything to point p,. This is equivalent to
choosing an origin for the coordinate system. Indeed, the locations of point 4 in both
examples are found by laying out the vectors —wjy and —2z,o from point P and find-
ing where 4 lies rather than starting from A and moving out to P. Anytime one uses
the set of equations (8.14a) and (8.14b) instead of the set (8.13a) and (8.13b), the origin
is moved, in effect, to point p,, and the usual convention that has been used in this
text, that the origin is at A4, is gone.
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Ground Pivot Specification

Mechanisms do not exist in isolation. They are parts of larger systems. Because of this,
the designer cannot let the frame attachment points be unconstrained functions of the
solution. Such solution points may, as in Example 8.2b, be impracticably or impossibly
located. It is clearly clumsy to vary the rotation angles until acceptable locations for
the frame attachment points, or ground pivots (4,D), are found. It is very useful to have
a scheme whereby the location of points 4 and D with respect to the precision points
can be specified in advance. This can be done, but not without penalty. First, the p,
equations are returned to the set so that, for example, the three-precision-point case
that was solved so simply now involves six complex equations, and four of the six rota-
tion angles cannot be specified but must be found from the analysis. Second, specifi-
cation of the location of A and D removes four variables from the list of unknowns,
reducing the freedom of the system by four, and bringing to five the maximum number
of precision points that can be specified. Despite these penalties, this is sufficiently
important to have a name, ground pivot specification, and 1 will now explore the
analysis for path generation with ground pivot specification.

As before, I will start with the simple case of three precision points. The governing
equations are taken from Equations (8.13a) and (8.13b). These are

220 + W = Po = 21 + 240 + wyl
e 2y + € wyg = py = —[z; + €1 - 249 + €3 - wy]
€2+ 230 + €% - wyy = py = —[z) + €2 - 745 + €2 - wy] (8.17)

I am free to choose two angles; the other four must be obtained from the analysis.
Let those two be the crank rotations ¢,, and ¢,, arguably the ones most likely to be
specified by a designer since they govern the timing of the mechanism. If, having
chosen the crank rotations, I can solve the left-hand dyad, that solution will give me
the values of the coupler rotations. Having the values of the coupler rotations means
that I have one set of angles in the right-hand dyad, so that whatever method I used
to solve the left-hand dyad will also work on the right-hand dyad. This is general. If
I can solve one dyad using a set of chosen angles, I can solve the other the same way.
This is assured because the coupler rotation angles, the ¢ j» appear in both dyads,
coupling their motions. Thus, a thorough exploration of the left-hand dyad with the
crank angles specified gives the pattern for all these synthesis solutions.

Rewrite the left-hand dyad equations, putting the unknown rotations ¢3; and ¢,
on the left-hand side and the known crank rotations on the right-hand side:

W = Po — 22

0
e - wy = p; — e - 7y
ei“’32 Wy = Py — €i¢22 * 220 (818)
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Now, multiply each side of the equation by its complex conjugate. This will eliminate
the coupler rotation angles ¢3;:
wao*Wao = PoPo* — 220"Po * 220220"
= * 021 . p ¥ —idy . p ¥ *
wa*wyo = pipi* = z20€" " pi* — 20€ @n - p ¥+ 220220

k= i —igyy .
Wao*Wag = PaPat — 220€%2 1 ¥ — 220€ 92 - p* + 290220 (8.19)

The set of equations (8.19) is made up of three real equations. Subtract the first from
each of the other two, and rearrange the result.

[ - p ¥ — po*lzge + e~ - p1 — polzn® = pip* — pPopo*

[€42 - py* — po*lzge + e 2 - py — polzn® = papy* — popo*  (8.20)
Letf; = [e 2 - p, — poland f, = [e 772 - p, — pol. The set of equations (8.20)

can be rewritten in terms of the real and imaginary parts of the variables and the
coefficients

2{Re[fi1Re[zz9) + Im[f}Im[z5]} = pipi* — PoPo*
2{Re[fs]Relz0) + Im[f]Im[z501} = p2p2™ — popo* (8.21)
Because f, and f, are known, this pair can be solved for the real and imaginary parts

of 250 and, hence, for 25 itself. It is left as an exercise in complex arithmetic to show
that the result is

0 = {fip2p2* — fapipi* — U - f2lpopo*}
1Y = fufi™}

(8.22)

Once this is determined, the remainder of the unknowns can be found by back substitu-
tion as follows:

Woo = Po — 220 (8.23)
) _ it .
gion = L1 = €7 2l (8.242)
W20
) _ it .
itn = [p — e Z20) (8.24b)

W0

Note that there is no ambiguity in finding the rotation coefficients €3 and e'*»
because no trigonometric inversion is required.

Once the left-hand dyad has been found, the right-hand dyad can be found in the
same way. Put the terms involving ¢4 and ¢4, on the left-hand side, and follow the
ritual just set forth. Those results will be
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_390:9" - fag191* — [fs — fil9090*}

Wy = (8.25)
* {f3fs* — fafs*}

240 = g9 — Wy (8.26)

) i3y .
e'd’ﬂ = —-—-—~—-—-[ql te W40] (8.27&)

240

id3 .

eit = M] (8.27b)

240

where f; = [e 7% - g, — gq),fs = [e 72 - g, — gq], and g; = p; + z;. The deri-
vation is left as an exercise for the reader. It should be easily reproduced by following
the model for the left-hand dyad.

Although the derivation is complicated and tedious, the result is quite simple and
lends itself to the construction of a nice deterministic algorithm.

PROGRAM 8.2:
PATH GENERATION WITH TIMING AND
GROUND PIVOT SPECIFICATION

enter

(Pos P1s P2, 215 D22, 21)5

fr=1e7"py —pol,  fo=1[e"®2-p, — pgl;

220 = {fiP2p2* — fopip* = Ui — flpopo*Y LAY — fofi*):
W20 = Po — 220,

[p) — e"u - Z0]

e‘¢3l = ;
W20
— pitr .
0% = [py — ez 220];
W20

qo =Pot+ 21,9 =p1 +2y,9, =py + 245

gr=1[e7-q —ql, gy=1[e"*2-gq, — q

wio = —{819292* — g2919,* ~ [g, — 8219090*} /{8182* — g281*};

240 = 9o — Waos
i3 = Wy + Wy,
r, = lzzo|, r3 = |Zso|, ry = |Zao|;

print (2,9, 239, Zag, 72, 3, 1y):
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EXAMPLE 8.3

Let the three precision points be py = 3.5543 + 4.7523{, p, = 3.7492 + 5.9084i,
and p, = 2.8085 + 5.8478i. Let the frame vector z; = —6, and choose the rota-
tions ¢, = w/4 and ¢,, = w/2. Then,

fi =3.2747 - 3.2255i,  f, = 2.2935 — 7.5608i

fufa* = 31.8979 + 17.3617i

and
2.3558 + 0.2605:
1.1985 + 4.4918i

220

Il

W0
For the second half of the dyad, calculate

e’ = 0.9692 — 0.2462i
e’ = (0.8959 — 0.4442;

(It is worth checking that the magnitude of these is unity, as it should be.) Putting
these into the second half of the dyad gives, in turn,

Il

3.6375 — 3.2716i
—1.1918 — 1.4807i

W40

240

As a check on the solution, note that the sum z,5 + wyy + wy + 249 must equal
-2y, here 6 + 0i.

Figure 8.9 shows the linkage in its initial (subzero) position.

If more than three points on the path are to be specified, then either the ground
pivot specification or the timing must be abandoned. If ground pivot specification is
abandoned and timing retained, five points can be matched. Retaining the ground

A D FIGURE 8.9 The linkage synthesized in
Example 8.3, shown in its initial position.




152  Synthesis

pivots and abandoning the timing also leads to five as the maximum number of preci-
sion points. Full freedom, of course, allows nine precision points to be specified. All
these cases are nonlinear.

Intricate analytic techniques exist for these more complicated five-precision-point
problems. The second Sandor and Erdman (1984) volume shows some of these. It
is probably more practical, however, to attack these through the use of successive
approximation, using the same sort of Newton-Raphson techniques explored earlier for
position analysis. This will be examined in the next chapter.

Motion and Function Generation

I noted earlier that motion- and function-generation techniques can be obtained easily
once path generation is understood. It is now time to redeem that promise.

Motion generation is the placing of an object in a sequence of positions, defined
by location and orientation. If the object is imagined to be attached to the coupler of
a four-bar linkage in some appropriate way, then one can choose a point on the object
as a coupler point P, and the motion of that point becomes a problem in path genera-
tion. The preservation of the desired orientation will be assured if the rotations of the
coupler are specified; the angles ¢3; will be specified.

From this preamble, it should be clear that motion generation is exactly equiv-
alent to path generation with timing, which has just been exhaustively covered. The
entire argument just rehearsed can be repeated with the simple substitution of the set
¢3; for ¢,; in the set of givens. Five precision points are possible for a fixed ground
link.

For ground pivot specification, the more common situation, an analysis parallel
to that following Equation (8.17) is possible. The coupler rotations are now speci-
fied instead of the crank rotations, so that the starting point for analysis is the same
for each dyad. In fact, the dyads can be solved independently, in any order. For the
left-hand dyad,

220 = Po — W
e'®z0 = p1 — 'y
e'®22y0 = py — €'*2wy (8.28)
and following the steps outlined after Equation (8.18) allows one to find w,q and,
from w,q, the remainder of the solution can be found by direct back substitution. The
right-hand dyad is found exactly as in the path-generation problem.
Function generation is the mechanical approximation of a mathematical function.

The angle of the follower is related in a specified way to that of the crank. In the nota-
tion of this text,

04 =040 + b4, 0, =03 + ¢, (8.29)
b4 = f(¢2) (8.30)
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Because angles are specified, the overall size of the mechanism is irrelevant. All
geometrically similar structures are equivalent. More importantly, note that this task
can be viewed as a special case of path generation. If the coupler point P is coincident
with point C, the joint connecting the coupler and the follower, then P will trace a cir-
cular arc passing through the set of precision points. The angles ¢; translate into
points p;. Thus, one need only synthesize the left-hand dyad using the techniques
outlined earlier. The right-hand dyad is degenerate: the vector wy is identically zero,
and the right-hand dyad is just the follower.

This argument has been chosen to show the connections among the three synthesis
tasks. It is more restrictive than necessary. If this procedure is followed, no more than
five precision points can be imposed. This is usually plenty, but it is interesting to note
that more can be chosen. Sandor and Erdman (1984) state that seven is the maximum
number of precision points.

What has happened? Where have the other two precision points gone? When the
circle was laid out, the initial follower position z4, was selected. This additional con-
straint removes two degrees of freedom. In principle, seven precision points can be
specified for function generation with a specified ground link.

With the number of precision points specified, it is possible to turn to the task of
choosing them. For path and motion generation, one chooses them for performance
considerations. There are usually special points that are crucial for the performance of
whatever task the mechanism is to perform. For function generation, structural error
should be minimized in some sense: the function should be approximated as closely
as possible over some fixed interval by matching the function at fixed points. [There
is another way of matching the functions, by fixing the value and some number of
derivatives at one point. For a further discussion of this, see Freudenstein (1955). It
will not be discussed further here.]

Function generation is mechanical analog computation. In this era of rapid elec-
tronic digital computation, it has little application. I have included it here for complete-
ness. There are some interesting associated issues involved in function generation, but
they are primarily of academic interest. They will be presented for the interested stu-
dent at the end of Chapter 9.

EXERCISES

1. Synthesize the following slider-crank mechanisms:
a. stroke = 10 in., timing ratio 1.5
b. stroke = 2.3 mm, timing ratio 2.8
¢. stroke = 37 mm, timing ratio 1.15
d. stroke = 4 in., timing ratio 1.75
2. In a coordinate system for which the crank-frame attachment point 4 is at (0,0)
and the follower-frame attachment point is at (10,0), synthesize a linkage for which

a coupler point P occupies successively points (3,4), 4, 3.5), (2,2). The time
between points should be the same, represented by a crank rotation of #/4.
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3. Synthesize a four-bar linkage to raise a telephone pole from the ground to the ver-
tical, passing through the precision points shown. Pick ground pivots on the ground.
(Does the pole hit the ground?)

SN IN N IA XY
¢ . T | ' I 1
4. Write a synthesis code for slider-crank mechanisms, using stroke length and timing
as the input variables. The code should: (1) check that stroke length and timing are
acceptable, (2) ask the user to provide either L or H, and (3) draw a ‘‘movie”’ of
the resulting linkage.



Chapter 9

Further Topics
in Synthesis

PATH SYNTHESIS FOR FOUR-BAR LINKAGES
USING INDIRECT METHODS

General Considerations

As in analysis, direct methods can be misleading. Chapter 8 presented a set of closed
direct analytic calculations leading to a candidate mechanism satisfying limited con-
straints. As the tasks become more complicated, as more constraints are added, as the
number of links is increased, direct methods become cumbersome and eventually
impossible. Just as indirect methods were applied to analysis, so too can they be applied
to synthesis. I will begin by examining the use of indirect methods to explore path syn-
thesis for a four-bar mechanism, using the dyad technique presented in Chapter 8. I
have chosen this limited problem because it is already familiar. As before, I will use
a multidimensional Newton-Raphson (NR) method for successive approximation.

Recall that the NR technique requires finding a set of unknowns that make a set
of constraint functions vanish. The technique has been discussed in detail in Chapter
5. With the ground pivot specification relaxed, the reduced version of the dyad equa-
tions, Equations (8.13a) and (8.13b) are appropriate, and the constraints can be con-
structed from these equations by taking the real and imaginary parts of the complex
equations. For the jth set, the constraint functions will be

F\; = x; — xo + Re{zp(l — ) + wy(l - e'?3) }
Fy; =y, — yo + Im{z(1 — ey + wy(l — e®¥)} (9.1a)

F3; = x; — xo + Re{zgo(l — ) + wy(l — e'*¥)}
Fy; =y, — yo + Im{zgo(l — €"%) + wy(l — ')} (9.1b)

The four functions given by Equations (9.1a) specify the position of the left-hand dyad
after the jth rotation. Those given by Equations (9.1b) specify the position of the right-
hand dyad. Each of these functions vanishes when the appropriate dyad places the
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coupler point at the desired location. Thus, each of the functions is an appropriate
constraint function capable of being used in a Newton-Raphson scheme. These
can be rewritten in a more useful real form by direct expansion and the use of the
identity

Wao = —W3g + 23 9.2)
to obtain

Flj = Xj — Xp + r2[cos 020 ~ COS 621] + r3'[cos(030 + 03) - 005(03j + 03)]

Fy;

i = yj - Yo + r2[sin 920 — sin 02_]] + I'3I[Sin(830 + 03) - Sin(03j + a3)]

F3j =X — Xp + r2[COS 040 — COS 04j] + r3I[COS(930 + 03) - COS(03j + a3)]
—r3[cos 030 — COS 03j]

Fy =y; = yo — rylsin 049 — sin 84;] + r3[sin(83 + a3) — sin(03; + a3)]

—r3[sin 63 — sin 6] (9.3)

where r3’ denotes the length of ws, and it is convenient to write these in terms of the
actual position angles 6;; rather than the rotations ¢;;. In the solution process, the rota-
tions will be used.

The set (9.3) has been constructed without restriction to ground pivot specifica-
tion. The original position has been subtracted. It corresponds to j = 0, and it is easy
to see [most easily from Equation (9.1)] that the j = O constraint is automatically
satisfied. Thus, j = 1 corresponds to the second precision point, j = 2 to the third,
and so on up to j = 8. For a two-precision-point problem, only the j = 1 set appears,
and only four variables cannot be specified in advance. For a three-precision-point
problem such as those analyzed in Chapter 8, both the J = l and the j = 2 set appear,
and eight variables cannot be specified in advance. Each precision point deducts four
variables from the set, and these variables can be chosen arbitrarily.

When fewer than nine precision points are specified, the system is underdetermined:
some variables become arbitrary. Which are arbitrary and which are to be determined
by the constraints is a matter of choice. Table 9.1 outlines one such choice for each
number of precision points.

The table shows the variables to be determined by the constraint equations. The
remaining variables are arbitrary. The beginning of the table echoes what was pre-
sented in Chapter 8:

® For two precision points, the constraints determine the link lengths and the distance
between P and B, the coupler point and the crank-coupler pin.

® For three precision points, the constraints determine the link lengths, the location
of P on the coupler, and the initial position of the linkage.

* A fourth precision point determines two coupler and two follower rotations in addi-
tion to the variables already determined.

® A fifth precision point determines all four coupler and follower rotations.

® A sixth precision point begins to determine crank rotations.
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Table 9.1 Variables to Be Determined by N Precision Points?

N Variables to Be Found

2 ry, 3, ra, 3’

3 ry, r3, 14, 13, g, 020, B30, B0

4 ry,or3, 4, 13’ as, Oy, 030, Os0, Gars @31, P42, 032

5  ryr3, ra.rys as, O, 030, 040, D41, D315 Paz. D32, Ba3. D33, Dass D34

6  ry, r3, 14, 13l s, B, 030, B0, Pa1. D315 a2, D32, Da3, D33, Pas, P3as Duss D35,

®24, D25

T 1y, r3, rs, 13’y as, B, 030, 040, Par> D315 Pa2s $32, D43, P33, Pads P34y Das. P35,
24, D25, Dass P36, P23> D26

8  ry,r3, 1413, a3, 099, 030. 040, Dars D315 P2, P32, Da3s D33, Dag, P34, Pus. D35, Doas
25, ags P36, D23 P26s Pa7s D37, D22, D27

9 ry,r3,re, 13, 03, 020, 830, 040, dars D31, D42y D32, D43, D33, g B34, Pus, P35, D24
P25, Dag, D36y P23. D26> D47, P37, D22, D27, Dag, P38, P21 P28

4The remaining variables may be chosen *‘arbitrarily.”’

The reader can follow the increasing complexity. It is important to note that the
order in which additional variables have been introduced is not unique. The order
shown in Table 9.1 is convenient only if one expects to go to nine precision points—an
unlikely event.

This discussion is general, and it is useful to illustrate general principles. A more
practical reduced procedure will be given later. For now, note that, with no difficulty,
this can be put into the NR scheme outlined in Chapter 5.

The set of variables to be found can be symbolized by the column vector x and
the constraints by the column vector F (x). As usual, an iterative process is established,
for which

Xpp] = X, + Ax, 9.4)
and the Ax, come from solving the linear system

A, (x)Ax, = —F(x,) (9.5)

The NR correction matrix A, is found, as usual, by differentiating the constraint
functions with respect to the appropriate variables. In this case, the variables are those
given in Table 9.1, and the constraint functions are those given by Equation (9.3) with
j=1,2,.... The elements of the resulting matrix are straightforward but lengthy.
I will not write them out here but, by using ® to denote nonzero entries, I will display
the pattern of the matrix A,
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where I have shown the entire 32 rows and columns. The rows repeat in pairs. The
first eight columns repeat in a four-row cycle as well.

The matrix is fairly sparse. The systems to be solved are square and are indicated
in the diagram. The largest system is 32 X 32, for the nine-precision-point problem.
Note that the circled terms in the first and second columns are easily eliminated analyt-
ically before a program to solve these systems is written. Considerable further simplifi-
cation is possible by interchange of rows and columns.

.r
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Table 9.2 Variables for Ground Pivot Specification

N Independent Variables Determinable Variables

2 b21. $31, D41 r2, I3, T3, @3, a3, b9, 030, 040

3 $21, $22, OF G31, D32 Above + ¢41, ¢4y and 21 ¢ Or G31, D3
4 One rotation angle Above + all but one rotation angle

5 None All

Ground Pivot Specification

Given an equation-solving routine capable of handling a 32 X 32 system (not difficult),
the reader can synthesize, in principle, a four-bar linkage satisfying the nine-precision-
point problem. This is, however, of only academic interest. (As will be seen later, it
is easier to handle more precision points by using more complicated linkages.) Most
useful at this stage is to pick up the problem of ground pivot specification and extend
the results given in Chapter 8 to the case of five precision points.

First, note that the two-dyad system used so far is not general enough to be
extended. How would you extend it to systems of more than four bars? Being less than
general, it is a weak foundation on which to build a general analysis. Instead of con-
sidering two dyad equations for each point connected by the common coupler rotations,
take the loop-closure equation itself and one dyad equation

2+ (22); + (23); + (24); = 0

(22); + 43(23); = pj 9.7
where, as earlier, g5 is a complex proportionality constant such that w, = g3z3. In
Equation (9.7),j = 0, 1, 2, . . ., denoting successive precision points.

Ground pivot specification implies that z; (= —r)) and all the p;, including po,

are known. Equations (9.7) yield four real equations for each precision point, and the
maximum number of precision points is five—pg, p|, P2, P3, p4—for which there will
be 20 real equations and 20 unknowns, to be found using the NR method of successive
approximation.

Table 9.2 shows the free variables, those that can be assigned, for ground pivot
specification. The ability to specify timing or to synthesize motion vanishes (for four-
bar linkages and ground pivot specification) when the number of precision points
exceeds three.

Consider the five-precision-point problem in the NR successive approximation
sense. It is necessary to write down the coefficients appearing in the iteration matrix
A, and to define the iteration vectors x, and Ax,. To do this, begin by ordering
the dependent (determinable) variables. The ordering I will use produces the column
vector x
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x = [ry, 13, rq, a3, az, Oy, 039, 049, D21, 21, D22, D23, D24s

31> D32, D33, D3a, Dars Pazr Pz, Paal” (9.8)

where the superscript T denotes transpose. The constraint function must also be num-
bered. F will be the real part of the loop-closure equation, with j = 0; F 2> will be the
imaginary part of that same equation. F3 will be the real part of the dyad equation,
with j = 0; F, will be the imaginary part of the same equation. The same equations
with j = 1 serve as Fs—Fg, and this procedure is followed through to j = 4.
As before, the coefficients of the matrix A, a;j, are given by
aF;
a =

v ox j

To calculate these, write out Equations (9.7)

ry cos(byo + ¢,;) + r3 cos(fy + $3j) + rycos(y + ¢d4) —r; =0 (9.9a)
ry sin(byy + ¢5;) + r3sin(@3 + @3;) + rysin(fy + $4) =0 (9.9b)

ry cos(byy + ¢,;) + azry cos(fyy + a3 + $3) — Re(p) =0 (9.9¢)
rasin(fy + ¢3;) + azrysin(f3 + az + ¢3;) — Im(p)) =0 (9.9d)

There are 400 coefficients in the matrix A; 160 of these are nonzero. The pattern
of coefficients is shown in Equation (9.10).

(¢ ¢ ¢00e¢¢000000000000 )
¢e e ()QQeee 000000000000
¢e()eeees(0000000000000O0
®e (e eee00000000000000
00000000000000000000
00000000000000000000
®e()eeee(ee (000000000
®o()eeee0()ee(00°e0000000O0
¢ee()(QQeee (e 000e°e000e°00

J oo 00eee 0000000000
000""00’000‘000000(
®e (e e e (00000000000
eee()(0eee(00°000°000¢e0
®e0(00e°ee00e000°e000¢°0
®e()eeee (00000000000
®e()eeee0000°000°e00000
¢ 0002000000000 e
¢ 0 (00eee (000000000
¢e()eeee0000°e000°e0000
¥°0000000000000000000J (9.10)
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INTRODUCTION TO SIX-BAR SYSTEMS

The step from four to six bars is instructive. Six-bar linkages have been examined
briefly in Chapter 2 and in Chapter 5 (position analysis). A general discussion of six-
bar synthesis is well beyond the scope of this text, but some indication of how it would
proceed is appropriate as a guide to what must underlie commercial programs capable
of synthesizing linkages more complicated than the four-bar linkages already discussed.

A four-bar linkage is defined by a single loop-closure equation. A six-bar linkage
requires two independent loop-closure equations. A 2n-bar linkage (with one degree
of freedom, a mobility of 1) requires n — 1 loop-closure equations. Synthesis requires
an additional constraint, one that assures that the synthesis point passes through the
specified precision points. Thus, the step to a six-bar linkage is made by adding a dyad-
like equation to the two loop-closure equations.

It will become apparent that six-bar linkages are considerably more complicated
than four-bar linkages. To make synthesis a conceivable task, it will be restricted to
cases for which ground pivots are specified. The point to be constrained will be sup-
posed to be attached to link 5. Figure 9.1 shows the five distinct six-bar linkages orig-
inally shown in Figure 1.17. Because ground pivot specification has been assumed, z;
is assumed to be known in all five cases, and 8, is supposed to be known in the two
cases for which the ground link is a ternary link.

The geometry of each link is determined by its initial position and the length of
each link: r, — r and 6,y — f¢. Those linkages for which the ground link is a ter-
nary link (Figures 9.1b and 9.1e) require four additional numbers (¢4, gs and ¢, gs,
respectively) to determine their geometry, for a total of 14 variables available for syn-
thesis. The three linkages with a binary ground link require 16 numbers to determine
their geometry; they have 16 variables available for synthesis. (The difference is not
profound; it is a consequence of assuming g, to be known in Figures 9.1b and 9.1e.)

As all the linkages with binary ground links are essentially equivalent and as these
have more freedom than those with ternary ground links, any one of these serves as
an illustrative model for six-bar synthesis. Take the Stephenson II linkage examined
in Chapter 5.

Two independent loop-closure equations are

7+ @)+ (@3); + (@) + e); =0 (9.11a)
q3(23); — (2a); + (@5); + q6(ze); = 0 (9.11b)

and a dyadlike equation is
(z2); — (1 + g3)(23); + g5(z5); —p; =0 9.12)

Forj = 0, these equations provide six constraints on 16 variables (representable as the
8 complex variables za9, 230, Z40» 250> 260 and q3, g5, g6). Each additional precision
point adds six constraints, the six new realizations of Equations (9.11) and (9.12). To
get to that precision point requires five rotations. Thus, for n precision points, there
are 6n constraints and 16 + 5(n — 1) variables. The maximum number of precision
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FIGURE 9.1  The five distinct six-bar linkages showing a set of variables useful for synthesis:
(a) the Watt I; (b) the Watt II; (c) the Stephenson I; (d) the Stephenson II; (e) the Stephenson IlI.
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points is obtained by equating these: 11 precision points are possible for a six-bar
linkage with a specified binary ground link.

If timing or motion generation is desired, each additional link adds only four
undetermined rotations, as either the crank rotation or the link-five rotation is speci-
fied. The maximum number of precision points is then determined from 6n = 16 +
4(n — 1): 6.

In either case, the number of equations to be solved is six times the number of
precision points, 66 and 36, respectively. In the second, simpler, case, the matrix to
be inverted is 36 X 36, with 1296 elements. Of these, 456 are nonzero if timing is sup-
posed to be given, and 440 are nonzero if motion generation is the task assigned.

FUNCTION GENERATION AND THE
CHOICE OF PRECISION POINTS

The question of how many precision points are possible for a given type of synthesis
has been answered. How to choose them is not so easily answered. For path or motion
generation, one chooses critical points, parts of the path where error is serious. For
function generation, one can derive a mathematically based technique. This is pri-
marily of academic interest, as noted earlier. I include it for completeness.

Before discussing the mechanical approximation in detail, it is instructive to con-
sider the general problem of the representation and approximation of functions on a
finite interval. Functions can be represented in functional series. A complete discussion
can be found in most texts in advanced calculus, such as that by Hildebrand (1962).
The following outline is well known and is stated without proof.

Let {F,(x)} be a complete set of functions on an interval a < x < b, and sup-
pose that they are also orthogonal with respect to the weighting function w(x), that is,

Sbw(x)F,-(x)Fj(x)dx =0, i#j 9.13)

Then an arbitrary (square integrable) function f(x) can be written

f) = Y aFi(x), xe€(a b) 9.14)
j=0
[2w(x) F; (0 f (x) dx

= 9.15
O P W@ W dx o1

It can be shown that the choice of coefficients (9.15) ensures that the approximation
obtained by truncating the series (9.14) minimizes the integrated error in the sense of
least squares. Further, the sequence of approximations made up of the partial sums to
n of Equation (9.14) converges to f(x) when n tends to infinity.

[The series representation best known to engineers is the Fourier series, which
represents a function in a finite interval by an infinite series of sines and cosines
periodic on the interval. Other complete sets of orthogonal functions can be found by
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solving Sturm-Liouville eigenvalue problems. The mathematically interested reader is
directed to the classical textbook by Ince (1926). For a discussion of Fourier series,
see the text by Hildebrand.]

An alternative representation of a function is the so-called Lagrangian interpola-
tion formula. Let

Ta(¥) =@ —x)&x ~x2) - - - (x — xp,)

L) =& - x) 'm0 /7, (x) 9.16)

The /; vanish for x = x; if i # j and equal unity for j = i. Any function f can then
be represented by a function of the form

n
L,(x) = Y fx)i») 9.17)

j=1

which is equal to the desired function at the specific points {x;}. This is exactly what
a function-generating linkage does, and so it is important to understand how good an
approximation Equation (9.17) is to a given function.

First, note that L, (x) is a polynomial of degree n — 1. If f(x) is a polynomial of
lesser or equal degree, then L,(x) is exact. To assess other functions, examine the
mean square error

Lf@ - LoPwewds ©.18)

where w(x) is a weighting function. If the polynomials l;(x) are orthogonal with
respect to the weighting function w(x) and the collocation points x; are taken to be the
zero of these polynomials, then the limit of the error as n tends to infinity is zero. That
is, the sequence of partial sums converges to the desired function. [See Szego (1959).]

Such orthogonal polynomials form a subset of the orthogonal functions discussed
earlier. There is a clear connection between the two approaches, but they are not iden-
tical. The latter recommends itself to the kinematician because only the discrete data
approach is possible in constructing a function generator.

There are many sets of orthogonal polynomials. Szego’s book (1959) is devoted
to these. The usual polynomials used in kinematics are the Chebyshev polynomials,
introduced by Chebyshev (1854) in one of his many analytic studies of mechanisms.
[For more details about Chebyshev polynomials, see Hochstrasser (1965), the book by
Szego (1959), and Erdelyi et al. (1953).] The Chebyshev polynomials (of the first
kind—the only ones to appear here) are defined by

T,(x) = T,(cos X) = cos nX 9.19)
with the weighting function

wx) = [1 — x?]! (9.20)
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and the ith zero of the nth polynomial is
x;,, = +cos{[2i — 1]7/2n} 9.21)

Choosing n precision points to be the n zeros of T, and applying a Langrangian inter-
polation results in a polynomial approximation of order n — 1

f@) =ag + aTix) + aThx) +- - +a,T,x (9.22)

closely related to, but not equal to, the truncated functional series based on Equations
(9.14) and (9.15).

I have been unable to prove, or to find a proof for, the following conjecture. If
the coefficients given by Equation (9.15) are approximated using an approximate inte-
gration scheme of the Gaussian type (Davis and Polonsky 1965), then the two expan-
sions are equal. [In the Gaussian scheme,

b
[l g0y dx = EWiglx) + R, 9.23)

where {W,} is a set of weighting coefficients for the integration scheme, not to be
confused with the continuous weighting functions w(x) associated with the set of
orthogonal functions {F,(x)}, and {x;} is a set of specific points on the interval (a,b).]
The relevant Gaussian scheme would be that for the same weighting function and zeros

[w@F@f@dr = {i1 = 212F@f ) de = (rnFx) 9.24)

x, = cos{[2i — 11/[2n}} (9.25)

using formula 25.4.38 in Davis and Polonsky (1965).

All the tools are now in place for function generation with up to five precision
points. The only remaining task is to use the Chebyshev development to generate the
precision points. For a given function-generation problem, the independent and depen-
dent variables (x and y) must be mapped onto the rotation angles ¢, and ¢4, and the
Chebyshev collocation points (precision points) must be found. These are mapped
directly onto the independent variable and, through the function being generated, onto
the dependent variable. This is best illustrated by constructing an example.

Consider the task of generating the function y = x23 for 1 < x < 2. The limits
of y are then 1 < y < 1.5874. For the Chebyshev formulation to be used, the inde-
pendent variable (x) must be scaled and mapped into the domain (—1,1). Let
7z = a + bx. Then, x = 1 corresponds to z = —1, and x = 2 corresponds to z = 1.
Solving the two linear equations gives

2= -3 +2x, x=232+22 (9.26)
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FIGURE 9.2  The output link (the follower) for a Jfive-point function generator synthesized for
the function 'y = x?3. The mapping of the five Chebyshev points in ¢4 space is shown.

Find five Chebyshev points. These will be given in z space by the five zeros
%5 = cos[(2i — 1)#/10] = +0.9511, +0.5878, 0 9.27)
The corresponding values of x are
x; = 1.9756, 1.7939, 1.5, 1.2061, 1.0245 (9.28)

Figure 9.2 shows the output link of the proposed mechanism. The range of the output
dial is to be 27/3 (120°). Let the range be symmetrically arranged about the vertical,
as shown. Thus, ¢, will range from 11%/6 down to 7x/6. Note that the convention
about the angle ¢, remains unchanged. The output of y must map into this range.
Thus, the mapping from y to ¢, is as follows:

¢4 = —[27/3])/[0.5874] - (y — 1) 9.29)

making the full range of ¢, correspond to the full range of y, matching the zeros and
changing the sign to make the needle move clockwise, which the dial reader’s eye will
see as increasing.

Let the range of ¢, be x/4. The range of x is 1, so that the mapping is

¢y =[7/4] - (x — 1) (9.30)

The Chebyshev points for ¢, are obtained by putting those for x into Equation (9.30).
The result is

¢y = 0.7662,  0.6235, 0.3927, 0.1619, 0.0192 9.31)
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The values of ¢4 corresponding to these are obtained by finding y; = x/"* and then
converting to ¢4, using Equation (8.14). That result is

¢4 = —1.2032, —0.9978, —-0.6501, —0.2788, -0.0341 (9.32)

The sets of rotations given by Equations (9.31) and (9.32) are now used to generate
the path generation with timing problem that can be solved as outlined earlier.

Note that the Chebyshev spacing is applied to the independent variable. The values
of the dependent variable are obtained from the function. They are the collocation
values, called f(x,) in the theoretical development.

GENERALIZATIONS
Velocity and Acceleration Synthesis

The choice of precision points so far has been literal; they have been points through
which the linkage must pass. It is also possible to specify the speed or acceleration of
the coupler point, say, at a given point, instead of increasing the number of points. It
is as valid to specify the values of a function and its derivatives at one point as to specify
the value of a function at several points. This was touched upon in the preceding sec-
tion. T will formulate these problems in this brief section.

Consider the problem of four-bar linkages with ground pivot specification and
start with the basic constraint equations (9.7). Several options appear to be available
for a combined path, velocity and acceleration synthesis. As in path synthesis (and the
other syntheses so far examined), the crucial issue is the number of variables and
of constraints. In the case of path synthesis (re-examine Table 9.2), five complex
constraints can be applied. The situation is a little more complicated in the case of
mixed synthesis because of the nature of the additional variables introduced by the
additional constraints.

In the case of path synthesis, each new position introduced two new dependent
variables, the two rotations. Each new position also required four new constraints, SO
that each new point added more constraints than independent variables. The number
of points one could specify was therefore determined by the number of points at which
the supply of new variables was exhausted by the increasing number of constraints. A
similar situation applies if one is to specify velocity and/or acceleration at one or more
points.

The velocity constraint introduces only one additional dependent variable, the
crank rotation rate, in contrast to the two introduced by a new position. However, four
constraints are introduced from both the velocity and acceleration equations obtained
by differentiating the constraint Equations (9.7). Differentiating Equations (9.7) once
[Equations (9.33)] and twice [Equations (9.34)] with respect to time gives the govern-
ing equations for the motion of the entire linkage and of the single dyad:

{iszz + iw323 + iw4z4}j =0

{iwzzz + iw3q3z3}j = p] =V; (933)
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{ids — w)zs + (163 — wiP)z3 + (g — wi)za}; =0

{0y ~ w)zy + (ias — waz)‘hzs}j =p;=gq (9.34)

Thus, even three-point ground pivot specification cannot be managed if one adds a
velocity constraint at one of the three points. The best one can do is to specify two
points and the velocity at one of them. The case for acceleration is apparently better
because acceleration introduces not only the crank rotation but its derivative, so that,
in principle, one could solve for these two as well as the two unspecified rotations (see
Table 9.2) and synthesize a linkage that passed through three points and that gave a
specified acceleration at one of these points. In practice, the linkage would be hard to
realize, as realizing a specified rate of change in crank rotation is not easy to do in the
real world.

The solution to this problem is, of course, to add more links to gain additional
freedom. This text is not the place to explore this in any depth, although it is probably
appropriate to mention another approach to synthesis problems, so-called optimum
design.

Optimum Design

I cannot cover the field of optimum design in this short section, but I would be remiss
in not mentioning the subject in a book dealing with design (synthesis). The reader who
wants to know more about this important subject is directed to any of the texts available
in this area, such as the relatively modern book by Vanderplaats (1984).

In all the synthesis problems discussed so far, the solution has been exact: that is,
a number of constraints were specified, and the number of dependent variables
available was greater than or equal to the number of constraints. Therefore, if the prob-
lem had a solution, that solution would be exact. The difficulty in solving large systems
of nonlinear algebraic equations may have obscured this point, but it is important. If
the synthesis problem posed had a solution, that solution would be exact.

This restriction to exact solutions severely limits the number of constraints that can
be applied. Alternatively, specifying many constraints leads to very complicated mech-
anisms. Optimum design provides an alternative approach that avoids this difficulty by
relaxing the requirement that the solution be exact. (This is only one way of viewing
optimum design, and one with which all optimum designers may not agree. Neverthe-
less, it is appropriate to this setting.) Consider ground pivot specification as a model
from which to move to optimum design considerations. The synthesis problem can be
viewed as the satisfaction of a set of synthesis criteria: that the linkage pass through
some fixed points, that it be subject to a set of constraints, and that the ground pivots
be assigned. This is a little different from what has gone before because I am
distinguishing two different kinds of constraints, one associated directly with the syn-
thesis problem, and the other, the ground pivot specification, associated with exterior
considerations. In a real problem, there will be other considerations external to the
synthesis problem, considerations of materials, cost, and the like. In the language
of optimal design, the synthesis constraints, say, the path specification, would be

sl
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specified by an objective function. This would be a quantitative expression of the dif-
ference between the linkage position and the desired linkage position at each of the
precision points. The task would be to make this objective function equal to zero under
the constraints of specified ground pivots.

The generalization is in the objective function. Rather than ask it to be the very
special function just described, let it be the mean-square distance of the coupler point
from some specified curve. The path synthesis problem was to make the coupler path
fit exactly on a given curve at a specified number of points. The new optimum design
path synthesis problem is to minimize the mean-square discrepancy from the given
path. The average distance cannot be made equal to zero, but it can be minimized, and
the coupler curve giving the minimum discrepancy is the optimal coupler curve in the
sense of the specific objective function.

Unfortunately, a disquisition on how to do this is beyond the scope of this text.
This is, however, an important synthesis technique, and interested readers should
explore this on their own. It can also be generalized further. For example, one could
ask for a minimum weight mechanism satisfying one of the exact coupler curve prob-
lems explored throughout the text. The objective function would then be the weight of
the mechanism, and the path synthesis, old style, would function as one of the
constraints.

EXERCISES

1. Write a set of constraint equations for the eight-bar linkage shown in Figure 2.9,
assuming the path point P to be on link 5.

2. How many precision points can be specified for the linkage of Figure 2.9
a. with ground pivot specification?

b. with ground pivot specification and timing?
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Chapter 10

Fundamentals of
Kinetic Analysis

The analysis and synthesis so far explored has been purely geometrical and kinemat-
ical. Mechanisms have been synthesized that (approximately) follow specified motions.
No mention has been made of the power required to drive these mechanisms nor of
the forces required in the various links. The even simpler question of the speed with
which the members move has been only very lightly touched on, in the context of tim-
ing and the synthesis of quick return mechanisms. These are important topics if one
is to design a real mechanism.

Any link is a real extended physical object, obeying the laws of dynamics. In the
design of mechanisms, links are usually taken to be rigid bodies, so that the relevant
laws are those of rigid-body dynamics: the conservation of momentum and the conser-
vation of moment of momentum (angular momentum). These basic principles, laid
down by Euler over 200 years ago, are covered in any elementary dynamics text (e.g.,
Beer and Johnston 1984), and the reader might well review that material, although the
presentation here is self-contained.

The kinetics of a mechanism can be studied at many levels of approximation. The
lowest level of approximation is that already covered: total neglect. To deduce other
useful levels of approximation, consider the dynamic behavior of a link in a bar mech-
anism. The general link is rotating and translating, and it is connected to the rest of the
mechanism by two or more joints. It may also be connected, directly or indirectly, to
the output of the mechanism. Figure 10.1 shows an isolated coupler. There will be
forces at B and C from the rest of the mechanism, and there may be a force at P if
the coupler is connected to a load. Let V denote the translational velocity of the coupler
and Q its instantaneous rotation. Let Fg, F¢, and Fp denote the forces at the three
positions, and let Rgp, Rpc denote the vectors from B to P and C, respectively. Let
M denote the mass of the coupler and I5 its moment of inertia with respect to B. Using
a dot to denote differentiation with respect to time, the dynamic equations may be
written

MV = Fz + Fc + Fp (10.1a)
19 = Rgp X Fp + Rge X Fe (10.1b)
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FIGURE 10.1  The free-body diagram
of a coupler showing the forces on the
coupler from the crank Fy, the follower
Fc, and whatever load is at point P, Fp.

I have returned briefly to vector notation to introduce this new material. These
equations are valid in three dimensions, and they should be familiar. They will be
recast in complex variable notation in the next section, and that notation will then be
used throughout the rest of the book.

An important approximation is the quasistatic approximation, for which the left-
hand side of each equation is negligible compared to the right-hand side, and the
dynamics problem reduces to a statics problem: the sum of the forces and the sum of
the moments both vanishing. This approximation is appropriate if either the linear and
angular accelerations, or the mass and moment of inertia, are small enough to justify
neglecting the left-hand sides.

Most mechanisms are required to transmit forces to provide a useful output from
a given input. The forces required to drive the mechanism itself ought to be small. Any
forces used to move the links require additional input for a given output. Thus, prop-
erly designed mechanisms will satisfy the quasistatic approximation. In designing
mechanisms, then, the quasistatic approximation will be assumed. It is important to
verify, after the fact, that the assumption was justified. You must calculate the inertial
forces and moments [the left-hand sides of Equations (10.1a) and (10.1b)] and compare
these to the others to be sure that they are negligible.

In the quasistatic analysis of mechanisms, then, the problems reduce to analysis
of free-body diagrams and the calculation of resultant forces. These familiar things
need only be put into complex-variable language to be integrated into the developing
kinematic lore of this text. To that end, it is necessary to look at complex forces and
to develop expressions for velocity, acceleration, and their angular counterparts. This
will be done in the next two sections.

FORCES, MOMENTS, RESULTANTS, AND THE
FREE-BODY DIAGRAMS

This section deals with the calculation of static forces and moments using the complex-
variable notation for bar linkages. The extension to dynamics is straightforward; one
needs merely to include the inertial reaction forces. This will be considered in Chapter
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11. Some general principles are worth noting. A pin joint cannot transmit moments.
Just as in statics, a two-force member, one loaded only through two pins, is loaded
along a line connecting the two pins. This will be of immense help in performing
analyses. It is necessary to distinguish between free pins and driving pins. In a crank-
rocker mechanism, for instance, the pins connecting the crank to the coupler, pin B in
our standard notation, and the pin connecting the coupler to the follower, pin C, are all
free pins and cannot support moments. (This changes if friction is allowed. That will
be considered in Chapter 11.) The pin connecting the crank to the frame, pin A, is not
free. In a real crank-rocker mechanism, the prime mover—some motor, perhaps—is
connected to the crank at 4 in a way that allows the transmission of torque to the mech-
anism, perhaps through a keyed shaft. In performing a force analysis, it is important
to be careful about this distinction. Most, but not all, pins are free.

Some additional notation is required for this section. A force on link j will be
denoted by the complex number f;. T will use 5 to denote the argument of f, sub-
scripted if necessary to resolve ambiguity. That is, f = | f|ei”. A second subscript
will be used to denote the application point of a force: fp represents a force on link j
acting at point P.

Figure 10.1 is a free-body diagram of a link. Let it be a coupler, and denote it
by link 3. There are forces at points B, C, and P, so that the quasistatic version of Equa-
tion (10.1a) is just

0=1fig + fac + for (10.2)

The sum of the moments about B requires some additional thought and manipula-
tion, using what has already been derived. First, recall that

Rpp 2 2p — 23
RCP = ic — 2B (103)
Then, note that

Rpp X Fp @ Im{(zp — 25)*f3p} (10.4)

so that Equation (10.1b) has the specific realization
0 =Im{(zp = 2p)*fsp} + Im{(zc — 2p)*f38} (10.5)
Euler’s equations of motion for a single link referred to an arbitrary point O are then
O=fyi+fag+ - +fy (10.6a)
0 = Im{Gzs — z0)*u} + Im{(zg — 20)*f5} + - - - + Im{(zy — 20)*v} (10.6b)

Application of these equations can be illustrated by finding the moment (torque)
at the crank base, point 4 in a standard four-bar linkage, for an arbitrary force applied
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FIGURE 10.2 4 four-bar mechanism loaded at each of its three moving links: (a) loaded
crank; (b) loaded coupler; (c) loaded follower.

to any link in a four-bar linkage. Figure 10.2 shows the various possibilities. If the
force is applied to the crank, a very simple problem results. Taking moments about
A leads directly to the moment at A4,

M, + Im(zp *f) = 0 (10.7)

where zp, is the complex vector at P with respect to 4. In general, I will write zp —
Zp: = zpp- in direct analogy to the vector notation introduced in Chapter 3.

If f is applied to the coupler (link 3), summing the moments about B gives the
scalar reaction force at C, f3ce "%, and force equilibrium then gives the total force at
B, f35. The force on the crank at B is then f,5 = —f35, and the sum of the moments
about A then gives the moment required for equilibrium. The sequence of calculations
is as follows. Diagrams are shown on Figure 10.3.

First, take the sum of the moments about B,

Im(zpg*f) + Im(zcg*) = 0 (10.8)

Link 4 is a two-force member, so that the forces f;c and f;p are both parallel to z4.
The force on the coupler at C, fc = —fac, and so it too is parallel to z4. Thus,

- i,

fic = £l facle™

It is inconvenient to carry the %+ sign around. To avoid that, note that
fic = frce e = [fyce%]e

Because f;c is parallel to z4, the quantity in square brackets is a real number equal
to + |ficl. This decomposition will be used any time the direction of a force is
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(a) (b)

FIGURE 10.3  Free-body diagrams for the coupler and the crank, assuming a uniform force
on the coupler point P: (a) the coupler; (b) the crank.

known, and the real number will be called the scalar force. Solving for the scalar force
and recombining give

fic = — {Im(zpp*f)/Im(zcp*e®)} (10.92)
= —{Im(zpp*f)/Im(z*24)} 24 (10.9b)

In the second line, 1 have multiplied by r,/r, and noted that zcp = 23.
Force equilibrium on link 3 can be written

f+fs+fic=0 (10.10)
so that the unknown force
fie = —f = frc = —f + {Im(zpp*)/Im(z3*24)} 24 (10.11)
This can be transferred to the crank because fog = —f35, and then taking moments
about A gives
M, + Im[z,*fo5] = 0 (10.12)

from which

M, = Im{z,*[f — {Im(zps*f)/Im(z3%24)} 241}

Im [Zz*f] - {Im (ZPB*f)/Im(Z3*Z4)} Im [22*24] (10.13)
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If fis applied to link 4, there is one more step in the analysis. The coupler is a
free link, and f;¢c = [fice %]e'%. The sum of the moments about D can be written

Im {zpp*f} + Im{(—24*) (~[fice 1)} =0 (10.14)
from which

Im {zpp*f }

—ifyy —
[fsce ™) = Im {z4*¢ )

The sum of the forces on the coupler can be written

fictfip=0
from which
fip = Im {ZPD*f} iy _ Im {zpp*f}
¥ Im{zg*e™) Im {z4%23}
and
Im {zpp*f}
= ~fig = ———— 10.15
fas f38 Im {za2a} * ( )
Finally, the moment balance about A can be written
M, + Im(z,*hp) = 0
from which
M4 = {Imlzpp*f] - Im[z;*z3]}/Im[z4*z3) (10.16)

The quasistatic analysis neglects the mass of the links, and that approximation will
be maintained through this chapter. However, forces in a running linkage are generated
by the need to accelerate the load—whatever the mechanism is driving. This is done
using D’Alembert’s principle, according to which minus the product of the mass and
its acceleration appears as an inertial force applied to the linkage.

INERTIAL FORCES

The first application will be to a general four-bar linkage that is supposed to be driving
a mass m along some path. To simplify the moment analysis, the mass will be assumed
to be a point mass. The path will be a coupler curve, and the notation will be the stan-
dard notation used in discussing coupler curves. Figure 10.4 will refresh the reader’s
memory. In the spirit of quasistatic analysis, the masses of the links will be neglected.
The mechanism will be supposed to be driven by uniform rotation of the crank at a
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FIGURE 10.4 A four-bar mechanism with a point mass attached 1o the coupler: (a) the mech-
anism; (b) free-body diagram of the crank; (c) free-body diagram of the coupler; (d) free-body
diagram of the follower.

rate §, = w,. The task is to find the torque required to drive the mechanism as a
function of position and, hence, time.

The position of the mass as a function of time is givenby zp =z, + w, =z, +
9323. The velocity and acceleration of the mass are obtained by differentiation:

Z.P = Z.Z + M'/z = iwzzz + iO)3W2 (10173)

p =2+ = —[w +idy)z; ~ [wy? + ids]w, (10.17b)

The mass is being driven by the coupler, so that the coupler feels the reaction force
—mZzZp.

Figures 10.4b-10.4d shows the free-body diagrams for all three links. The mass
on link 3 provides an inertial force to load link 3. Link 3 is not a free link. The analysis
is exactly parallel to that for a static load on link 3, presented earlier, from Equations
(10.8)-(10.13), with f = —mZp. That is, one proceeds as follows:

Note that link 4 is a two-force member to obtain the direction of f5.
Take moments about B to find the magnitude of f3..

Use force equilibrium on link 3 to find fiB

Apply fo5 = —f35 to the crank to find M,

0N =
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The result of these steps is

Im[z,%z4]

I *mz, 10.18
Im[zs*z4] m[w,*mzp] ( )

M, =Im {z2*mzp} —

where Zp is given by Equation (10.17b). . .

To evaluate that expression, the rates of change of 63, 65, and 85 are needed.
These can be obtained using the algorithms outlined in Chapter 9. Thus, the solution
given in Equation (10.18) is really the last step in a chain of algorithms, not a formula
into which one would plug values. Actual calculation will be discussed in Chapter 11.
I have displayed it to emphasize a geometric property of four-bar linkages. Note that
the moment at A is formally infinite for almost any applied force if Im {z5*e%} = 0.
This term is zero when the coupler and follower are aligned. The condition of align-
ment is called a change point or a toggle point. The angle between the coupler and the
follower is called the transmission angle. At a toggle point, the transmission angle is
zero or .

Not only is the driving torque formally infinite at a change point, but the path of
the mechanism is ambiguous. Figure 10.5 shows a mechanism at a change point and
the two paths available to it near the change point. Change points are tricky and require
considerable thought on the part of the designer. Sometimes it is necessary to provide
guidance through the change points to prevent the system from reversing the sense of
the output (follower) rotation. In other circumstances, the inertia of the system is ade-
quate to carry the mechanism smoothly through the change point. A one-time common
linkage with change points was the drive mechanism for the steam locomotive. [For
a wealth of information on steam locomotives and their mechanics, see Tann (1981)
and Warren (1970).]

If the load is applied to the follower, either as a force somewhere on the linkage
or as a torque at D, the expressions simplify. Point P moves to C, and the effective
force fyp is now parallel to z3, because the coupler is now loaded only through
its pins. Again, the analysis follows the static analysis given in the preceding section.
A free-body analysis of the follower gives the force at C in terms of the output
- torque Mp.

[face ] = —Mp/Im {z,*e"} (10.19)

FIGURE 10.5 A four-bar
mechanism shown passing
through a change point. As
the crank moves from B to B’,
point C may move to either
C ;' or Cz "
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The effective f3p is the negative of the force on the follower at C,
fip = Mpe'™/Im {z,%e%} (10.20)
and this is balanced by the force at B, so that
fi8 = —Mpe™/Im {z,*¢%3} (10.21)
Finally, the torque balance at 4 gives
M,y = —MpIm {z,*e™3}/Im {7 * 03}
= —MD[r2 Sin(03 - 02)]/["4 Sin(93 - 04)] (1022)
Equation (10.22) can be obtained directly from (10. 18) by putting f3p equal to the
expression (10.20) and letting point P move to C. The first term on the right-hand side
of Equation (10.18) is then identical to the right-hand side of Equation (10.22), and
the second term vanishes because, when P moves to C, w, becomes equal to z; and,
thus, Im {w,*f;p} = 0 because the two vectors are parallel.

The ratio of the output torque to the input torque, here Mp/M,, is called the
mechanical advantage of the linkage. It is given by

Mp/M, = —Im{z *e®}/Im {z,% €3}

Il

—[r4 Sin(03 - 04)}/[)‘2 Sin(03 - 02)] (1023)

Note that this is equal to w,/w,. In crank follower pairs, w, M, = w,Mp; the power
in is equal to the power out. This is consistent with the neglect of the inertia of the
links and friction in the joints.

As in the more general case, the mechanical advantage is zero when the coupler
and follower are parallel, or in toggle. For this special case, the mechanical advantage
can be seen to be infinite when the crank and coupler are in toggle. Both the auto
window mechanism (Figure 1.6) and the vise-grip pliers (Figure 1.7) introduced in
Chapter 1 take advantage of this. The window linkage uses both toggle positions. The
“inner’” toggle, with z, and z5 antiparallel, is used to lock the window closed. The
“‘outer’’ toggle, with z, and z; parallel, is used to resist the wind pressure trying to
close the window when it is open. When the vise grips are locked, the crank and
coupler are in the outer toggle position.

THE SLIDER CRANK

The analysis so far has been formulated in terms of the four-bar mechanism. The slider-
crank can be fit into the same format. The obvious problem is to find the torque



182  Forces and Moments

22

z3

Z1

far

%4 \'M

@ (b)

FIGURE 10.6 A slider-crank mechanism, taking account of the mass of the slider: (a) the
mechanism; (b) free-body diagram of the slider.

required to drive the slider. Note that there are two levels of approximation available:
the output force can be considered to be constant, or the output can be supposed to
drive a point mass. If the system is operating in ‘‘reverse,”’ like an engine, then the
force at the slider can be specified as a function of time, and the torque at the crank
can be found. In this problem, there must also be a load on the crank or the dynamics
cannot be solved. This problem will be addressed in Chapter 11. Figure 10.6 is a defi-
nition sketch of the slider-crank mechanism.

The initial quasistatic analysis doesn’t care what the imposed force on the slider
is, an inertial force or an externally generated force. Figure 10.6b shows a free-body
diagram of the slider. In addition to the imposed force f, there are reaction forces from
link 3 and the guide that constrains the slider to move horizontally, the former parallel
to link 3 and the latter perpendicular to the direction of motion of the slider, here
defined as parallel to z;. In general, there will also be friction forces from the guide.
These will be assumed to be negligible for the present analysis.

As the forces on the slider all act at the slider center of reaction, point C, the nota-
tion already developed needs some help.

Let the force on the slider be f;, and write

fa = [f] + Lface 1e™ + [fage 271" (10.24)

where [f] is the scalar imposed force and the other two terms on the right-hand side
represent the reaction forces from link 3 and the guide, respectively.

In the quasistatic approximation, f, equals zero and Equation (10.24) can be
solved for the two scalar reaction forces [ fyce ~%3) and [ fize ~B3%21 If fis an inertial
force, caused by the motion, then f;, as written in Equation (10.24), is still zero, but
f will then depend on the position of the linkage. This issue will be deferred, and f
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will be assumed to be constant. Then, considering, in turn, ¢ ‘%3 and e ~*™? times
Equation (10.24) and taking the imaginary part gives

[fsce P™) = —[f1{sin(3n/2)/sin(37/2 — 63)} (10.25a)
[fire "] = [f]{sin B5/sin(37/2 — 65)} (10.25b)

The remainder of the analysis is simple. The coupler merely transmits the force
at C to B:

fic=~faice 8= =fic = faco  fap = —fip = fic = ~fac (10.26)

EXERCISES

1. Find the moment at A required to maintain the six-bar linkage shown in the sketch in
equilibrium (motionless).

for = Ugpe™re s

2. What is the reaction force at A for the four-bar linkage shown in the sketch?

c

3. If the linkage of Exercise 1 is to be held in equilibrium by a moment (torque) at
D, what is its magnitude?

4. For a complete cycle, 0 < 6, < 2, for the slider-crank mechanism shown, plot
the following quantities: position, velocity, and acceleration of point C; the force
on link 3 at point C; and the moment at A4 (the shaft torque) required to drive the
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mechanism. Let the mass of link 4 be 1 kg, and let the crank rotate at 900 rpm.
Neglect gravity, friction, and the inertia of the other links.

H =1m
rp =1m
r3 =2.5m
c

777" t Y7777

S. Let the mass at P be 5 kg, and let the crank rotation rate be 1 Hz. Plot the coupler
curve, and plot both components of velocity and acceleration of point P for a com-
plete cycle. Find the components of the force on link 3 at P. Assume the dimensions
to be (in mm): r, = 300; r, = 100, ry = 175, and ry = 175, and let w, =
0.8¢z,.

6. The crank shown is 1.4 m long. The angle 8, = ar? + 3w/2, where ¢ denotes the
time in seconds. The mass is 4 kg. The acceleration of gravity points down on the
page and is equal to 9.8 m/s2. Find the torque (moment) at 4, at z = 0.5 s, if

a = 2.4 rad/s?.
/ Y1770071/4

A

2

Pe,,

7. The force in a linear spring is equal to & times the difference between the stretched
and relaxed length of the spring. This force is parallel to the spring. The spring
shown is such a spring, and it has a relaxed length of 5. The link lengths are:
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ry=4,r, =1,r; =5, and r, = 4. Outline the procedure for calculating the tor-
que at A for a complete crank cycle.

C»—fmmwmmm\-éjﬁ{—
° |

4

4

8. Find the moment at A for the preceding linkage when 8, = f; + = = 4.1888
(240°).






Chapter 11

Friction
and Inertia

In Chapter 10, forces and torques were considered for *‘perfect’’ mechanisms: friction-
less mechanisms with massless links. Mechanisms were made to move with no care
as to how this movement might be driven. A torque was needed; a torque was supposed
to be available. These restrictions will be progressively relaxed in this chapter, and
more realistic problems and tasks will be examined. In order to keep the new phenom-
ena in clear focus, the mechanisms involved will be restricted to four-link mechanisms:
four-bar linkages and slider-crank mechanisms. This chapter as a whole is designed to
show just how far one can get with the simple tools introduced earlier in the text. It
can be read as an introduction to further work in the dynamics of machinery and the
design of moving systems.

Figures 11.1 and 11.2 show the most general four-bar linkage and the most general
slider-crank systems with which this chapter will be concerned. All links will be sup-
posed to have masses m; and moments of inertia lj-, where j denotes the link number,
as has been the case throughout the text. The moments of inertia will be taken with
respect to the same point with respect to which the link angle is measured. That is,
1, is measured with respect to A, I3 with respect to B, and I, with respect to C. The
four-bar linkage is assumed to be loaded through either the coupler or the follower,
or both, by forces. Point moments at points P; and P, are excluded, although it should
be reasonably clear how they could be added.

The slider crank is loaded through the slider, which is supposed not to rotate.
Clearly, there are normal forces and torques developed at the sliding joint between the
slider and the frame. Moments will not be considered in this chapter, and normal forces
will be deferred until the final section. Because moments are neglected, the moment
of inertia of the slider is irrelevant to this analysis.

The dynamics of the individual links are controlled by the general equations given
at the beginning of Chapter 10, Equations (10.1a) and (10.1b). The complex two-
dimensional forms of these equations can be written out for each individual link. The
first line represents the balance of forces, where the force on link j at joint J is denoted
by f;;- The second represents the balance of moments. The result for the four-bar
linkage is

187
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FIGURE 11.1

Sketch of a four-bar

linkage defining the notation used in this
chapter. The notation is consistent with the

notation used earlier.

/777

c
N\ 4

/7777

FIGURE 11.2  Skerch of a slider-crank linkage defining the notation used in this chapter. The
notation is consistent with the notation used earlier.

Crank:
my$s = fou + fon
L8, = My, + Myp + Im(z,* fop) (11.1a)
Coupler:
m3&3 = fip + faic + fap,
I8 = Myp + Mac + Im@z3* fic) + Im(g3*23%Fsp,) (11.1b)
Follower:

mals = fac + fap + fap,

1,6, = Myc + Myp + Im(z4*fap) + Im(qq*z4*fop,) (11.1¢)
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and, for the slider crank,

Crank:

mysy = foa + Fon

L, = My, + Myp + Im(2,* f2p) (11.2a)
Coupler:

msfz = fig *+ fac

13.0.3 = M3p + Msc + Im(z3* f30) (11.2b)
Slider:

0 =1Im(fuc + /1L + fs)

my Re(£y) = Re(fac + fo + f5) (11.2¢)

where the {; denote the vectors from A to the center of mass of the link, that is,

o =2+ 23+ qu24

and similarly for the others. The complex number g; in each expression is analogous
to the number g introduced previously to specify a coupler point in terms of z;. For
simple rods or bars, each g; is simply 1/2.

The slider-crank equations can be obtained by reduction from the four-bar-linkage
equations. The only slider-crank equations calling for comment are the last pair, Equa-
tion (11.2¢). I have divided the force on the slider into two parts, fi and fs. The
former includes any load attached to the slider or, if the mechanism is driven by the
slider as in an internal combustion engine (to be explored at length later), the force
applied to the slider, as well as the frame reaction force. The latter has a frictional com-
ponent, directed parallel to link 4, and a side force directed perpendicular to the slider.
In general, there will be a moment on the slider as well, as was noted earlier. Its com-
putation is beyond the scope of this text, and further discussion would merely cloud
the picture.

These equations are the general versions of those given in Chapter 10. Equations
like (10.6) can be obtained from these general equations by elimination of the joint
moments M;p and the inertial terms on the left-hand sides.

FRICTION

Friction is a dissipative force acting to oppose motion. All real linkages have friction.
The friction in a corkscrew is large and obvious. Friction in other mechanisms may
be quite small. Commonly, one designs mechanisms to have little friction, as friction is
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usually a loss. Zero friction is, of course, impossible; any mechanism without friction,
once set in motion, would run forever, and this is contrary to intuition and experience.
Friction makes such perpetual motion impossible.

Friction can be divided into dry friction and lubrication. For lightly loaded, non-
critical, and inexpensive mechanisms, the trouble and expense of adding lubricated
bearings is not worthwhile. In most other circumstances, lubrication is well worth the
effort.

Dry friction is frequently characterized using the Amonton-Coulomb friction rule
(Coulomb friction): the friction force is proportional to the normal force and indepen-
dent of the contact area. The proportionality constant is called the coefficient of fric-
tion, usually symbolized by u. Frequently, a distinction is made between the coefficient
of static friction and the coefficient of sliding friction, the latter being smaller when
they are different. The image usually presented in statics (cf. Beer and Johnson 1977)
is that of a block on an inclined plane. If the plane is inclined steeply enough, the block
will slide. The coefficient of static friction is the tangent of the angle at which sliding
just begins. The coefficient of sliding friction is less than, or equal to, the static coeffi-
cient. It can be determined, in principle, by the final equilibrium sliding speed down
an infinite inclined plane. This point will not be pursued further here.

Lubricated mechanisms can be analyzed using standard lubrication analyses based
on the Reynolds equation. [The Reynolds equation was first derived by Osbourne
Reynolds (1886). Its derivation can be found in any modern book on lubrication theory,
€.g. Gross (1980).] In such circumstances, the friction force is relatively insensitive
to the load but is proportional to the sliding speed between the two moving surfaces.
I will use a simplified model of both sliding and rotating friction, assuming the friction
force (or torque) to be proportional to the relative speed between two links, either rota-
tional or sliding. Friction opposes the motion. For rotational friction, the friction acts
as a moment; for sliding friction, it acts as a force. The reader familiar with the
language of applied differential equations will recognize this form of friction as being
identical to the damping terms introduced in simple dynamical systems, such as the
harmonic oscillator or the one-dimensional wave equation.

Rotational friction depends on the speed with which the angle between two links
is changing, on the rate of change of the difference between two link angles. If the angle
between links 2 and 3 is increasing, then friction, which acts to retard the motion,
appears as a positive moment on link 2 and a negative moment on link 3. This is, of
course, general. If the joint moments appearing in Equations (11.1) and (11.2) are
restricted to frictional moments, as they will be for all the joints except A4, they can
be written out as

MZB = _M3B = [,LB(é:; - 0.2) = #g(w3 - O)z) (113)
Msc = —Myc = pc(6s — 63) = pc(ws — w3) (11.4)
Miup = —ppls = —ppw, (11.5)

where the three coefficients pup, uc, and uj denote effective friction coefficients for
the bearings, and w denotes the derivative with respect to time of 8, the notation intro-
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duced in Chapter 6. The effective friction coefficients have the units of moment times
time. In SI units, these are N-m-s, or kg-m?/s.

Sliding friction opposes the motion of the slider, so that its action on the slider is
negative when the slider is moving to the right and positive when the slider is moving
to the left. Rightward motion corresponds to increasing r,, and vice versa, and so the
sliding friction for a slider-crank mechanism can be written

fo= —pghs = —MsVa (11.6)

when the subscript S denotes sliding and v, the rate of change of r4. The coefficient
pg has the dimensions of force divided by velocity. In SI units, this is N-s/m, or kg/s.

Some Friction Examples

The Four-Bar Linkage

The simplest four-bar friction analysis is one for which only up is nonzero. This is
also a model for a system in which the output torque of the follower is proportional
to the rotation rate of the follower. More complicated output forces are possible, but
I will not address them here. Two cases can be examined for this simple case: a fixed
shaft rotation rate, w, or a fixed torque applied at the shaft, M. In the former case,
the problem is to determine the required torque; in the latter, the shaft rotation. Both
of these will be functions of time. The analysis is the same in this special simple case.
Shaft rotation and torque turn out to be proportional, and all that is necessary is to find
the relation connecting the two.

In this simple case, the reduced version of the second of Equations (11.1a) shows
that the shaft torque M, , depends only on f,5 and the position of the linkage. (As with
all analyses beyond the simple position analysis, it is assumed that a position analysis
routine is available, so that it is enough to specify the dimensions of the linkage and
the behavior of the crank to know the position, velocity, and acceleration of all the
links. Programs like those developed in Chapter 5 will serve.) Because inertia has been
neglected and no external forces are applied to any of the links, all the forces are equal
in magnitude and direction and are alternating in sign. Thus,

fs = fic = fap (11.7)

Because there is no frictional moment at B or C, the technique used in Chapter 10 to
isolate two-force members can be applied to the coupler, link 3. That is, link 3 is a
two-force member, and the link force can be written in terms of the scalar force repre-
sentation, namely,

fic = [fsce e = fup (11.8)

Substituting this into the reduced version of the second of Equations (11.1¢) gives an
expression for the scalar force
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, M. @
iy _ 4D _ HDWq 11
Lfsce™™] rs sin(f; — 6,) ry sin(0; — 0,) 412

where the second right-hand side is obtained by substituting for the frictional moment
from Equation (11.5). The force is now known, and it is easy to find the moment at A:

r sin(03 - 02)

11.10
ry sin(03 - 04) ( )

My = —ppw,

The techniques explored in Chapter 6 can be used to find w4. Substituting for w,
from Equation (6.7) gives the final expression for the shaft torque in terms of the shaft
rotation rate

r22 sin2(93 - 02)

11.11
r42 sin2(93 - 04) ( )

M, = Kpwr

If the crank rotation w, is given, the shaft torque M, 4 can be found; if M,, is given,
w, can be found.

The behavior of the torque (or of the rotation) depends on the nature of the linkage
and varies with position during each cycle. The torque required to keep the linkage
moving goes to infinity when the linkage moves into toggle. Friction cannot resolve
this difficulty. It is inherent in the geometry. Figure 11.3 shows the torque as a function
of crank angle for three crank-rocker linkages, identical except for the follower length.
The common lengths are: r; = 100, r, = 10, and ry = 80. The follower lengths for
the three cases, a, b, and c, are rsa = 40, r4p = 50, and ryc = 60. The figures were
prepared using a realization of the pseudocode given later as Program 11.1. (Some
additional friction examples will be presented in the next section.) As the follower
length increases, the minimum difference between the coupler and follower angles
decreases. That is, the linkage moves further and further from a change point (from
being in toggle), and the magnitude of the maximum moment decreases. There are two
maxima, approximately 180° apart, one corresponding to the follower moving to the
right and one to the follower moving to the left. Note also that the position of the max-
ima changes somewhat with linkage geometry, although the effect is small for the small
changes in geometry explored here. The reader is encouraged to construct a personal
code and explore a wider variety of cases at leisure.

The problem is made somewhat more complicated if all three undriven joints are
allowed to have frictional torques, so that all three p are nonzero. There are now no
two-force members; both the coupler and the follower have moments applied to their
ends. The analysis is still fairly simple. It can be done directly, without need for
successive approximations, because all the force balance equations still involve only
two forces so that, as previously, the forces all have equal magnitude and alternating
sign. In this case, however, the direction is not known a priori but must be found from
the analysis.
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FIGURE 11.3  Shaft torque as a function of follower length during one crank revolution: (a)
follower length = 40; (b) follower length = 50; (c) follower length = 60. Crank length = 10,
coupler length = 80, and shaft to output (frame) distance = 100. Torque units are arbitrary;
the crank angle varies from 90 to 450° (see text).
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To simplify the notation, let the joint friction coefficients be equal, so that

Myp = Mg = ~Msp

Mic = Mc = —M,¢

Mip = My (11.12)
and

fas=fic=fao=f= ~fip = ~fac (11.13)

With these definitions, the three force equations are satisfied identically, and the
three moment equations become

0 =M, + My + Im(z,*f) (11.14)

0 = —M,p + Msc + Im(z3*f)

0 = —M;c + Myp + Im(z4*f) (11.15)
The first of these will serve to determine the required driving moment, once the force
has been determined. The two equations (11.15) can be viewed as giving the value of
two projections of f: one along z3 and one along z4. As long as the two links are not

parallel—a situation that has already been seen to be singular—these two projections
are independent and can be used to determine f Let

f=Re(f) + iIm(f)
In terms of this Cartesian notation, the two equations (11.15) can be rewritten as the
algebraic pair
—r3 sin 03 Re(f) + r3 Cos 03 Im(f) = M2B - M3C
—rq sin 04 Re(f) + rycos 04 Im(f) = M3c — My, (11.16)
from which the Cartesian components (the real and imaginary parts) of f can be deter-

mined. These can be substituted into Equation (11.14) and, after some manipulation
and simplification, the moment at A can be written

r Sin(02 - 04)
rs Sil’l(03 - 04)

ry Sin(03 - 62)

M, = —My + ,
4 B r Slﬂ(03 - 04)

(Mg — M¢) + M — Mp)

(11.17)

All three moments are proportional to the first time derivatives of the link angles, as
shown in Equations (11.3)-(11.5), and all the derivatives can be related to w5 using
Equations (6.6) and (6.7), so that Equation (11.17) can be rewritten as a relation
between the shaft torque M,, and the shaft rotation rate wj.
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The following program will calculate the shaft torque as a function of crank posi-
tion, assuming that the procedures at the beginning to find velocity and position are
available. It is an obvious implementation of Equations (11.3)-(11.5). This pseudocode
assumes the existence of (1) a position code such as that outlined in pseudocode as Pro-
gram 5.5, or its Newton-Raphson equivalent, Program 5.8; and (2) a velocity and
acceleration program such as that outlined as Program 6.1. The moment procedure is
shown explicitly.

PROGRAM 11.1:
SHAFT TORQUE FOR FOUR-BAR LINKAGE
WITH VISCOUS FRICTION

procedure velocity (0, w,, ry, ra, ra, 4, @3, wg)
procedure position (6,, ry, r, r3, 4, 03, 84)
procedure moments (0, ry, ra, 13, ra, 03, 04, pg, ke, p, Map, Myc, Myp)
begin
M,p = pp(ws — wy)
Myc = pclws — w3)
Myp = —ppws
end
enter (wy, 7y, 2, '3, r4)
enter (05, 660,, n)
enter (up, pc, Up)
for i =1ton do
6, = 6, + 66,
position (8,, ry, ry, r3, rs, 03, 04)
velocity (6,, wj, 1y, ry, I3, 1y, w3, Wy)
moments (0,, ry, ry, 3, rs, 03, 04, pg, e, wp, Map, Myc, Myp)

M,, = —Myp + [rysin(@, — 84)/r3 sin(63 — 6,)1(Myp — M3()
+ [ry sin(@3 — 04)/ry sin(03 — 0)](M3¢c — Myp)

repeat the loop

end
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The Slider Crank

The analysis for the simple friction-loaded slider crank is very similar to that for the
four-bar linkage. The basic equations can be written out by simplifying Equations
(11.2), as was done for the four-bar linkage. The crank and coupler force equations
are automatically satisfied by setting

he=fic=f= —fic

in direct analogy to Equation (11.13). There remain two moment equations and one
force equation, and these are analogous to the three moment equations (11.14) and
(11.15):

0 = Mys + Myp + Im(z,*f) (11.18)

0 = =My + M3c + Im(z5*f)

0 = Re(f) + [fse “)e% — Re(f) (11.19)

The square-bracket notation is that of the scalar force introduced in the preceding
chapter. [Note that §, = 7, so that exp(+ifs) = —1, and Equation (11.19) can be
written in the alternative form

0 = Re(fy) — [fse 4] — Re(f)

so that Re(f) is determinable from this equation.]
As in the four-bar case, the two equations (11.19) can be solved for f, and Equation
(11.18) can then be solved for M, ,. That result, in terms of the forces and moments, is

ry cos 9 ry sin(6, — 65)
Myg = ~Myp + 2—2(=Myp + My) + 22 = %) ooy 4 14D
r3 cos 6, r3 cos 63

(11.20)

where [ f5] is short for —[fse =i7]. As in the four-bar case, the friction force and the
moments can all be written in terms of w,, and Equation (1 1.20) then becomes a rela-
tion among M,,, w,, and the load (or driving force) Re(f;). [The reaction force
Im(f;) can be found from the second of Equations (11.2¢).]

Four cases can be recognized. The first two have [fi] equal to zero and so are
analogous to the two cases discussed for the four-bar linkage. We can specify the crank
rotation speed and find the torque required, or we can specify the torque available and
find the rotation speed possible. The other two cases assume that a load on the slider,
or possible driving motion from the slider, [f1], is nonzero. The two possibilities still
arise. One can still ask what torque is needed for a specified rotation rate, or what rota-
tion rate will follow from a given shaft torque, if [f;] is a load. If [f2] is a driving
force, such as would be found if the slider crank were being used to model an internal
combustion engine, as will be done later, then the load is at the shaft, joint 4, and can
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be specified as a torque, or as a required speed, and we can ask what driving force
[f] is required to meet the specified torque or speed at the shaft. This is an interest-
ing problem, which I will defer until inertia has been considered.

The analog of the example of a simple friction-loaded four-bar linkage is a slider
crank for which up = 0 = pc and Re(f;) = 0. Then,

ry sin(d, — 63) £l = nsF ry sin(6, — 63)
- 4

My, =
r Cos 03 r3 COs 03

[fs] (11.21)

Compare this to Equation (11.10). The methods of Chapter 6 can be used to eliminate
rs (see Exercise 6.3). This leads to the analog of Equation (11.11)

2 2
ry” sin“(6, — 03)
M,, = _ 22
24 = Ks 72 cos 0, [fs] (11.22)

and the interested student is encouraged to write the code necessary to explore the
behavior of this simple system.

INERTIA

All the dynamic analysis presented so far neglects inertia of the links, although the
inertia of specifically added masses was considered in Chapter 10. Link inertia was for-
mally neglected by neglecting the mass and moments of inertia in the dynamical Equa-
tions (11.1) and (11.2). To include inertia, it is merely necessary to include these
terms. This is a generalization of the inertial force analysis presented in Chapter 10.

Two classes of problems present themselves: (1) the crank rotation is specified,
and the problem is to find the reaction forces and moments; (2) the crank moment
(torque) or some other forcing function is specified, and the problem is to find the
motion. The first problem is much easier than the second. If the motion is specified,
then velocities and accelerations can be found using the programs of Chapter 6, and
the inertial forces can be calculated as in Chapter 10. In the latter case, the dynamical
equations are actually ordinary differential equations, with time as the independent
variable and the various linkage parameters as dependent variables. These equations
must be integrated, subject to the constraints imposed by the loop-closure equation(s).
I will begin with the first, simpler, problem.

If w, and its derivative with respect to time are specified, then Program 6.1 can
be used to find all the rates of change of angle and position with time, so that everything
in Equations (11.1) is known except the shaft torque M, and the joint forces. The
three force equations can eliminate three of the four independent forces in terms of the
fourth. Letting f>5 be the remaining undetermined force gives

faa = mzfz - [

fac msS;'; + foB
fap = mabs + m3f3 + fap (11.23)
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and the three moment equations are
My = Loy — Myp — Im(z,*f5) (11.24)
Im(z3*fp) = L33 + Myg — Mac — Im(z3*m373) (11.25)
Im(z4%frp) = L4104 + Myc — Myp — Im(zg*m, 7)) — Im(z4*m;23) (11.26)

As in the previous section, Equations ( 11.25) and (11.26) can be solved for two
independent components of the unknown force f28, assuming that the linkage is not in
toggle. Once f,p is known, Equation (11.24) can be solved for the shaft torque M, ,.
All this could be written out in one grand formula. It would occupy an entire page of
the text and be of little use to anyone. Once again, an algorithm is preferable, and Pro-
gram 11.2 is an algorithm for finding the shaft torque for this problem.

PROGRAM 11.2:
SHAFT TORQUE FOR A FOUR-BAR LINKAGE
(WITH SHAFT ROTATION SPECIFIED)

procedure velocity (8;, wy, ry, ra, 73, 14, w3, Wy, 23, 23, 24, 22, 23, 24)
procedure position (0, ry, ry, r3, ry, 05, 6,)
procedure moments (0, r\, ry, r3, ry, 03, 04, up, pc, pp, Mag, Msc, Myp)
begin
enter (w,, ry, ry, 3, ry)
enter (0,, 86,, n)
enter (ug, uc, up, I3, I3, 14, 92, q3, q4)
for i=1ton do
8, = 6, + 560,
position (8,, |, ry, r3, 14, 05, 0,)
velocity (6, wy, 11, 1y, 13, 14, w3, w4, 2, 23, 24, 23, 23, 24)
moments (0,, r\, ray, 3, ry, 03, 04, ug, pc, up, Myp, M;c, Myp)
all
all = —rysin 6, a22 = rycos 8,

J = all*a22 - al2*a21

~rysin 03, al2 = r;cos 6,

bl = Lws + Myg — Msc — Im(z5*m3q;32,)

b2 = Liws + Myc ~ Myp — Im(z4*myquz4) — Im(z4*m;qszs)
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Re(fop) = (@22*bl — al2*b2)/J

Im(fo5) = (—a2l*bl + a22*b2)/J

M,, = Lw, — Mag + ry sin 6 Re(fap) — ra cos 0, Im(f2p)

repeat the loop

end
The same sort of analysis can be done for the slider crank. If either the crank

motion or the slider motion is specified, all the forces and torques can be found. Treat
f>p as the unknown force, as I just did for the four-bar linkage. The remaining two

forces can be written down directly from Equations (11.23), which apply equally to
both situations:

fra = mylr — fap

fic = m383 + fap = —fac (11.27)
The components of f, can then be determined by solving the second moment equa-
tion in the set (11.2) and the final force equation. Then the moment can be found from
the first moment equation in the same set. Once again, writing out the algebra is not

productive, and the procedure is best expressed as an algorithm, given below as Pro-
gram 11.3.

PROGRAM 11.3:
SLIDER-CRANK MOMENTS WITH MOTION SPECIFIED

procedure velocity (8>, w2, ri, 72, I3, T4, @3, W4, 225 235 L4 22, 235 24)
procedure position (84, ry, r2, I3, rq, 03, 04
procedure moments (6, 7y, 72, '3, T4, 03, 04, pp, o> KD M>p, Msc)
begin
enter (ws, i, 2, '3, Tas 425 43)
enter (6,, 60,, n)
enter (ug, e, 12, I3)
for i=1ton do
0, = 6, + 50,
position (05, r(, r2, 13, T4, 03)
velocity (8,, w2, 1, 2, I3, T4 @3, Was 225 23> 24 23, 23, 24)
moments (85, 7y, 72, I3, Ta» 83, 04, pgs pos Map. M30)

all = —rysin 03, al2 = rycos 0;
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a2l =1, a22 =0

J = all*a22 — al2*a21

bl = Lwy + Myp — Msc — Im(z3*m3q32;)
b2 = m4 Re(z4) — Re(fy)

Re(fop) = (a22*%b1 — al2*b2)/7

Im(f5) = (—a21*b1 + a22%b2)/J

M4 = Lwy = Map + ry sin 6, Re(fo5) — r; cos 6, Im(fp)

repeat the loop

end

The reader will note that the structure of Program 11.3 is the same as that of Pro-
gram 11.2. The input data are different, and the motion, velocity, and moment pro-
cedures needed to be changed to those for the slider crank. The actual calculation
shown here has retained the algebraic manipulation used in the other code. Only the
coefficients change; the operations can be left the same. This is a precursor to building
larger codes for which the algebra will be more clearly separated from the analysis.

It is instructive to examine the nature of the forces and moments. The equations
are sufficiently complicated to put a thorough exploration of the behavior of linkages,
even limited to only four-bar linkages, well beyond the scope of a general text. Inter-
ested readers are urged to construct their own programs and to explore at leisure the
behavior of linkages. In this space, I will look at three relatively simple four-bar
linkages, parameters of which are given in Table 11.1. I will look at the reaction forces
as well as the driving torque. The slider crank will be examined later as a model of
a one-cylinder internal combustion engine.

These three four-bar linkages are taken from linkages explored earlier in the text:
the motorcycle foot brake (Figures 11.4 and 11.7) and the car window mechanism
(Figures 11.5 and 11.8) from Chapter 1 viewed as crank-rocker mechanisms, and the
mechanism shown in Figure 6.4 (Figures 11.6 and 11.9). All three linkages will be
treated as if made up of rods so that, using the parallel-axis theorem (cf. Beer and
Johnston 1977), the moment of inertia of each link with respect to its end is

1

and the mass of each link will be taken to be proportional to the length of the link. The
first three are friction-free examples, and the second three are inertialess frictional
examples. The forces depend linearly on the masses and friction, so that these examples
can be added, even though the problems are nonlinear. The code used to generate these
curves is based on the pseudocode Program 11.2.
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Table 11.1 Parameters for Figures 11.4-11.9

Figure Figure Figure Figure Figure Figure
11.4 11.5 11.6 11.7 11.8 11.9

r 100 100 110 100 100 110
r 16.2 2.6 60 16.2 2.6 60
rs 98.6 4.1 100 98.6 4.1 100
rs 20.4 100 100 20.4 100 100
ms, 16.2 2.6 60 0 0 0
msy 98.6 4.1 100 0 0 0
my 20.4 100 100 0 0 0
I, 87.480 2.253 1200 0 0 0
I3 3240.65 5.604 3333.33 0 0 0
14 138.72 3333.33 3333.33 0 0 0
LB 0 0 0 i 1 1
bc 0 0 0 1 1 1
“p 0 0 0 1 1 1

The first curve in each figure is the shaft torque, the second is reaction force at
A, with diamonds denoting the horizontal component and crosses the vertical compo-
nent, and the third is the reaction force at D. The horizontal axis shows the crank angle
from 90° to 445.2°, the distinct part of a full cycle. These motions are periodic, so
that the moment and forces at 450° equal those at 90°. (The choice of 90° to 450°
instead of 0° to 360° is simply an artifact of the choice of reference angle. When the
crank angle is at zero, the linkage is in toggle, and the program will not start. Thus,
I have done all the calculations starting with the crank vertical, corresponding to a
crank angle of 90°.) The inertia figures are scaled. The force scale used is
(1/2)ymyryw,?, and the moment scale is /,w,?. The friction pictures are unscaled. In
all cases, w, is fixed at unity.

The reader should note that the reaction forces are variable and that they vary over
a wide range, as does the driving torque. All diagrams show a single spike corre-
sponding to the minimum value of sin(f; — 64). This is in contrast to the double
spikes appearing in Figure 11.3. The difference is that sin(#; — 6,) never gets very
small for the cases shown in Figure 11.3. These latter examples lead one to wonder
about constant-speed mechanisms. Is it really necessary to have a wildly varying shaft
torque? How do the reaction forces shake the mechanism? These questions will be
examined in more detail after the questions of torque-driven systems and of loads have
been examined.
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FIGURE 11.4  The motorcycle foot-brake linkage with inertial resistance: (a) shaft torque,
arbitrary units; (b) shaft reaction force, arbitrary units (diamonds denote the horizontal compo-
nent, plus signs the vertical); (c) follower reaction force (at D), arbitrary units (diamonds denote
the horizontal component, plus signs the vertical).
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FIGURE 11.5  The car window linkage with inertial resistance: (a) shaft torque, arbitrary
units; (b) shaft reaction force, arbitrary units (diamonds denote the horizontal component, plus
signs the vertical); (c) follower reaction force (at D), arbitrary units (diamonds denote the hori-
zontal component, plus signs the vertical).
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FIGURE 11.6 The linkage shown in Figure 6.4 with inertial resistance: (a) shaft torque,
arbitrary units; (b) shaft reaction force, arbitrary units (diamonds denote the horizontal compo-
nent, plus signs the vertical); (c) follower reaction force (at D), arbitrary units (diamonds denote
the horizontal component, plus signs the vertical).
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FIGURE 11.7  The motorcycle foot-brake linkage with frictional resistance: (a) shaft torque,
arbitrary units; (b) shaft reaction force, arbitrary units (diamonds denote the horizontal compo-
nent, plus signs the vertical); (c) follower reaction force (at D), arbitrary units (diamonds denote
the horizontal component, plus signs the vertical).
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FIGURE 11.8 The car window linkage with frictional resistance: (a) shaft torque, arbitrary
units; (b) shaft reaction force, arbitrary units (diamonds denote the horizontal component, plus
signs the vertical); (c) follower reaction force (ar D), arbitrary units (diamonds denote the
horizontal component, plus signs the vertical).
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FIGURE 11.9  The linkage shown in Figure 6.4 with frictional resistance: (a) shaft torque,
arbitrary units; (b) shaft reaction force, arbitrary units (diamonds denote the horizontal compo-
nent, plus signs the vertical); (c) follower reaction force (at D), arbitrary units (diamonds denote
the horizontal component, plus signs the vertical).
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FORCE- AND TORQUE-DRIVEN SYSTEMS

Any four-bar linkage or slider-crank system must satisfy the appropriate governing
equations, Equations (11.1) or Equations (11.2), respectively. In the cases examined
so far, the crank rotation has been specified. With the crank rotation specified, the
equations reduce to algebraic equations. They are nonlinear algebraic equations and
need to be solved numerically, but they are algebraic; no integration is necessary.

As written, with the crank rotation unspecified, they are second-order ordinary
differential equations. The dependent variables are the link angles, and the independent
variable is time. To find the motion of the system, the set of differential equations must
be solved. The differential equations are nonlinear, and they are constrained by the
loop-closure equation in each case. (As demonstrated in Chapter 6, all the rates of
change are connected. If one is known, all the others are known as well.) Analytic solu-
tions to these strongly nonlinear differential equations are not known. It is necessary
to solve them numerically. How to do this is explained in detail in both Carnahan et
al. (1969) and Press et al. (1986). I will outline the underlying principles here and
demonstrate some of the preliminary algebraic steps necessary before the numerical
methods can be used.

The problem for either the four-bar linkage or the slider crank can, in principle,
be reduced to a single second-order differential equation for 6,. The velocity and
acceleration equations can be used to eliminate the derivatives of the other link angles
in favor of 6,. The resulting differential equation can be solved formally, again in
principle, for the second derivative of 8,, leading to a quasilinear second-order ordi-
nary differential equation:

.0.2 = (1)2 = F(02, 03, 04, éz, é:;, é4, ry, ra, rs, r4) (1128)
This single second-order equation can be written as a pair of first-order equations

(;)2 = F(oz, 03, 04, éz, 03, 04, ry, ry, r3, I'4)

8, = w, (11.29)

so it is really only necessary to understand how to solve a single nonlinear first-order
ordinary differential equation.

Newton-Raphson methods were introduced in Chapter 5 for one-dimensional
systems before extending them to multidimensional problems. The same thing can be
done here. If one equation can be solved, the extension to a pair, and then to a system
of arbitrary size, is straightforward.

Consider the equation

y=f.n (11.30)
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The derivative can be approximated using the definition of the derivative

y(t + Ar) — y(@)
At

and an approximate version of Equation (11.30) can be written as one step in an
iterative scheme,

yn+l — yn + Atf(y,t) (1131)

Equation (11.31) is called the simple Euler scheme with forward differences. Unless
the time steps are very small, the scheme is unstable, and this scheme is almost never
suitable for numerical integration. More stable and accurate schemes are created by
improving the approximation of the derivative.

A very common class of direct integration schemes is the Runge-Kutta method.
Different orders of Runge-Kutta integration approximate the derivative to different
order. A fourth-order Runge-Kutta technique, the most commonly used, approximates
the derivative using the value of the function at four points. It is fourth-order accurate,
which means that the error in integration can be represented by a constant times
(A1)3. For well-behaved systems, the constant is not large. For pathological systems,
the constant can be very large; for fourth-degree polynomials, the constant is zero. In
the latter case, the Runge-Kutta scheme gives the correct answer within numerical
accuracy. 1 will use the fourth-order scheme to generate solutions in this text. The
actual code is adapted from that given in Press et al. (1986). [The reader should note
that the fourth-order Runge-Kutta scheme, while common, is not the only scheme for
integration in time. There are problems for which it is unsuited. Decisions about the
nature of numerical methods are in many cases artistic—whence the name of the Press
volume just cited. The interested reader is referred to either Carnahan (1969) or Press
et al. (1986).]

A system of first-order ordinary differential equations can be solved using the vec-
tor equivalent of the single equation system. That is, if the unknowns are y,, y2, . . .,
y,, then the system to be solved is

ylzfl(yl’y%"'»Yn»t)
V2 =fais yas oo Vs 1)
)‘)n :fn(yl’ Yos « v v 5 Yn» t) (1132)

At their most complicated, the algebraic equations cannot be solved symbolically and,
thus, one cannot write the equations with the various derivatives isolated as in Equation
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(11.32). In that case, the governing system must be written

Aiyi =i Y2, oo oy Yus B) (11.33)

where A4;; is a coefficient matrix depending on all the components of the vector y; and
the time 7. The elements of the matrix will be denoted by a ij- In the simple case in
which the second derivatives can be separated, the equations can be manipulated so that
the off-diagonal elements are all zero. In the general case, this cannot be done in closed
form, and the algebraic equations corresponding to Equations (11.33) need to be solved
numerically at each time step. Program 11.4 outlines the procedure.

PROGRAM 11.4:
INTEGRATION OF A SYSTEM OF EQUATIONS

procedure invert (4;, 4,

ijs
procedure calculate (y;, 4;, f)

procedure time step (y;, 4;7", f,, dy;)

begin
enter (physical parameters)
enter (initial values of y;)
enter (rmax)
while ¢ < rmax do
begin
calculate (y;, 4;, fi)
invert (4;, A4;7")
time step (y;, 4;7", f;, 6y))
Yi = Yyi + 6y
repeat the loop
end

In this program, the procedure invert and time step are general procedures taken
from text or from software available at whatever computation center is being used. The
procedure calculate must be provided by the user. It will contain the dynamic (or
other) equations to be solved. The physical parameters include all the linkage param-
eters and any external forces and torques, and tmax is the upper limit of integration.
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How does all this apply to the problems at hand? To explicate this question, I will
convert Equations (11.1) into a form that can be integrated using the vector Runge-
Kutta scheme. This can be done in several ways. The breakdown is not unique. As
written, the equations already have all the second derivatives with respect to time on
the left-hand side. However, the constraint provided by the loop-closure equation has
not been applied, and some manipulation is necessary. The degree of manipulation is
a matter of taste.

For the four-bar analysis, I imagine that the shaft torque M,, is given, or
required, and that the load can be represented by M,,,. These are specified functions
of time, and the task is to find the position of the linkage as a function of time. As in
the simpler case worked earlier, the three force equations can be used to eliminate all
but one of the forces. That one remaining force can be any of the joint forces. I will
let f,5 be the unknown force.

To find f,p, I solve the second and third moment equations for the two compo-
nents of f,5 in terms of the rates of change of the angles. It is convenient to use the
expressions in Chapter 6 to eliminate the link accelerations in favor of the angular
accelerations:

4 = (io; — v}z (11.34)

This can be generalized in an obvious fashion to find the rates of change of the $i
which are sums of z » €ach of which can be differentiated using Equation (10.34). The
two equations determining f,, the reduced moment equations from Equations (11.1b)
and (11.1c), are

365 = “pp(w3 — wy) + pclws — w;)
+myIm{(o; — wih)z3*t3} + Im {z3%f,) (11.35)
and
1,6, = “kelws = w3) = ppwy + ms Im{(iv, — w3%)z4%E3)
+my Im{(iG, — wMza*ts} + Im{z,*fop) (11.36)

Enough information is available to construct an algorithm, but that algorithm
would be quite complicated, obscuring essential points in a fog of algebra. To avoid
this for now, neglect the bearing friction at B, C, and D as small compared to the load,
and neglect the inertia of the crank and coupler. This combination of assumptions does
not change the problem in any serious way but makes it possible to proceed further
analytically, which is useful if one wants to understand what is happening.

Under these assumptions, the coupler is a two-force member. That is, only the
ends of the coupler are loaded, and the loads are applied through pins, so that no
moments are applied to the coupler. Then f;5, and hence fap, is parallel to the
coupler. This could have been deduced directly from Equation (11.35). Equation
(11.36) becomes
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Iy — maqars®) s = r4[f23e'i93]Sin(03 - 04) (11.37)

determining f»p in terms of wy. Substitution into the moment equation obtained from
Equation (11.1a) by eliminating g, k¢, #p; and the inertias of the crank and coupler
gives the dynamical equation

ra(ly — magqars’) sin(@; — 82) .
W4

Iw, = Myy + 11.38
272 o4 rysin(@; — 04) ( )
The rate of change of follower angle can be found from Equation (6.10),

r, sin(8, — 63) . r,cos(f, — 63)

wy = " wy — .
ry sin(6, — 03) ry sin(@y — 03)
2 3 2
—cot(8; — 03w’ — 3 (11.39)

ry sin(04 - 03) ¢

The pair of equations (11.38) and (11.39) form a fourth-order system. This is
obvious once the two supplementary equations,

éz = Wwj, é4 = W3 (1140)

are added. This system can be solved in two ways: either one can address the full
system, using a 4 X 4 matrix, or one can use Equation (11.39) to eliminate w4 from
the system, reducing itto a second-order system in the crank angle. The former method
is much to be preferred. It makes use of the numerical techniques just developed and
is relatively easily adapted to ““canned’’ numerical integration schemes, which gen-
erally expect to be presented with a system of first-order equations.

The behavior of the slider crank is calculated in the same way, just as I showed
in the earlier sections on friction and inertia. The internal combustion engine is a
common example of a mechanism that can be abstracted as a slider-crank mechanism,
driven by the slider. Because it is such a common example, I think it informative to
address the question of force-driven slider cranks through the specific example, an
example that can be further extended to look at the forces that shake a mechanism and
its frame.

A Model for a Four-Stroke Engine

A four-stroke internal combustion engine has four independent components of its cycle.
(Any mechanical engineering thermodynamics book will give you more detail than I
include here, but I think it useful to construct the model here.) There is an intake
stroke, during which the piston moves to increase the cylinder volume, and air (as well
as fuel) is drawn into the cylinder. This is followed by a compression stroke, during
which the volume decreases and the mixture is compressed. At the end of the compres-
sion cycle, the mixture is ignited, and it expands, driving the piston in the power stroke.
This is followed by the exhaust stroke, during which the volume decreases again and
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the products of combustion are expelled. Anyone familiar with internal combustion
engines will realize that this is simplified; issues of timing, partial combustion, and
other real phenomena are totally neglected. This is, however, adequate to construct a
model for dynamic analysis.

The piston cylinder crankshaft system can be modeled as a centered (zero-offset)
slider crank. The total motion of the slider, 24 in the notation used in this text, is equal
to the stroke of the cylinder. Because the mechanism is centered (that is, there is zero
offset, H = 0), the crank must be d units long: r, = d. The connecting rod joining
the crank shaft to the piston plays the role of coupler. The load being driven is con-
nected to the crank and enters the analysis as the shaft torque, M,,.

The important aspects of this problem are the load, the driving force of combus-
tion, and the inertia of the linkage. The last will be dominated by the inertia of the load
and flywheel, appearing in the analysis as . To isolate these phenomena, I will neg-
lect all friction forces, assuming them to be small compared to the load, as they will
be in any well-designed piece of machinery. I will neglect all forces at the piston except
that during the power stroke, assuming that the other three strokes have forces small
compared to the load (the additional analysis to add the compression stroke, clearly the
next effect, is straightforward, and I will leave it to any reader interested enough to
construct a personal code), and I will assume that all the linkage inertia is in the crank
through its connection to the flywheel. That is, the inertia of the piston and of the
connecting rod are both negligible. It remains only to construct a model of the power
stroke.

The combustion and subsequent expansion is a rapid process, and it is sufficient
for the present purpose to assume an adiabatic expansion, so that the pressure on the
piston face is proportional to the gas density to the y power, where 7 is used to denote
the ratio of specific heats. The expanding gas is mostly air, and I will take v =14
The gas density is inversely proportional to the volume of the cylinder, which varies
linearly with the position of the cylinder, hence with the slider. If Po denotes the
pressure at the minimum volume, a measure of the energy being dumped by com-
bustion, and ¥, denotes the minimum volume of the cylinder, then the pressure can
be written as a function of r4 during the power stroke and taken to be zero during the
other strokes. Thus,

Y Y
Po_ (Yo) Yo (11.41)
Do 14 ma’[(Vo/ma®) + ry + L — ry]

where a denotes the radius of the piston, L the coupler length (in this zero-offset case),
and r, the instantaneous length of the standard slider-crank vector z4. The force is
equal to p times the piston area.

To apply this in the present circumstance, write the reduced versions of the slider-
crank equations (11.2), which are

Crank:

1 ..
5 M2 =fou + fap

Loy = My, + Im(z,*f) (11.42)
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Coupler:

0="/fig+ fic

0 = Im(z3*f3¢) (11.43)
Slider:

0 = Re(fac + f1) (11.44)

and f; is given by the power stroke relation, Equation (11.41), during the power
stroke and is zero otherwise. The factor of 1/2 in Equation (11.42) is the value of g,
for this problem.

Neglecting the joint friction at B and C, and the inertia of the coupler makes it
possible to consider the coupler a two-force member, and the coupler force can be
found directly in terms of the driving force f;. This is enough to allow all the kine-
matic variables to be solved explicitly in terms of the crank angle, so that the dynamics
can be reduced exactly to a second-order system constructed from the crank moment
equation.

The governing equations become, written in their standard form as a pair of first-
order equations:

Loy = My + [fope 3 |rysin(@; — 62) (11.45a)
8, = wy (11.45b)
where
[fope %] = _Reld) (11.46)
cos 03

The slider crank always has 85 between —/2 and 7/2, so that its cosine is always
positive. The loop-closure equations can thus be used to find cos 65 unambiguously in
terms of trigonometric functions of 65, so that the pair of equations (11.45) can be
integrated without the need for successive approximations in the position location
routine. Indeed, the position location can be incorporated directly into the integration
scheme. This is simple enough to be left as an exercise for the reader.

A thorough exploration of the behavior of this model is another task that is beyond
the scope of this text. The question of reaction forces will be addressed in the following
section. Some simple observations are in order at this point. Equation (11.45a) states
that the angular acceleration of the crank is equal to the difference between the driving
force of the piston and the load. Steady rotation is possible only for an exact balance
between the two, and this would be possible only for a very peculiar load because the
force is a function of time and is zero for about three quarters of the time. Note, how-
ever, that the larger the inertia of the system, the smaller the angular accelerations
necessary to balance differences between the load and the driving force.
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This thought can be extended. The relative behavior of any linkage cannot depend
on the units of measurement. In Parts I-IV of this text, I noted that all that was impor-
tant was the relative lengths of the links. With forces and torques added to the system,
things are more complicated, but the idea that the nature of the behavior depends only
on ratios remains. The relative contributions of inertia, load, and driving force to Equa-
tion (11.45a) determine the behavior of the linkage. The actual values become impor-
tant only at the next level of design requirements—making sure the system is strong
enough.

For the sake of discussion, assume a frictional load, so that

My, = —pyyw, (11.47)

Let time be measured in units 7. Substitute Equation (11.47) into Equation ( 11.45a),
introduce the time scale explicitly, separate the dimensional and nondimensional parts
of the driving force, and divide the resulting equation by p,,. The resulting non-
dimensional equation, written as Equation (11.48), shows the important ratios govern-
ing the behavior of this one-cylinder engine model.

loy = —w; + Fg(6,) (11.48)
where
[ _ 12 7 F = 7{"00(127'27'
B2AT K24

and the function g(6) describes the variation of the piston force as the mechanism turns.
It is obtainable from Equations (11.44) and (11.46).

[This approach to general understanding through scaling is an example of dimen-
sional analysis. For a thorough discussion of the principles and practices of this art,
the interested reader is directed to Sedov (1959) or to the appropriate sections of most
texts in fluid dynamics or heat transfer.]

Figures 11.10 and 11.11 show some simple results, which I hope are sufficiently
intriguing to motivate readers to build a code and explore these situations further.
These results are based on the formulation shown in Equation (11.48). The geometry
is given in unspecified units, although modeled on a 100-ml displacement, ‘‘square’’
(bore = stroke) cylinder. The geometry of the linkage is the same for all the illustra-
tions: d = 2.515 and ry = 8.0. The offset is zero. I take 7 to be unity. The system
inertia ratio / is 50 for all cases. Note that the mass of the crank is irrelevant for the
computation of the rotation. It enters only in the computation of the reaction forces,
to be considered in the next section. Variables are the initial rotation rate of the crank
(the load) and the force ratio F. Figure 11.10 shows two different individual conditions
for the same force ratio, F = 150.

There are a total of five distinct sets of results in the two composite figures
(Figures 11.10 and 11.11). Each part of the figures has a plot of crank rotation rate
as a function of time and a plot of piston position as a function of time. Separating the



216 Forces and Moments

- - - -

T
it "J"u’"J"u’"a“i","i'*.’I‘i"%""“"i"i""ia"f‘:‘i'lé'ﬂ":':'"‘s'isi:ﬁ ﬁ'zsiﬁﬂ.i‘.ﬁn'?m'

@)

iﬂ"‘i 5!

-d
(b)
FIGURE 11.10  The one-cylinder engine with force ratio 150 and inertia ratio 50: (a) start-up
frm t(b)trtptpedhgh r than theqlb msdepp r plot in each part is
dimensionless rotatio . time; the lw s piston displacement vs. time. The dashed line

btw thtwohwwh th cylinder ﬁgthdt fthpwtk



217

Friction and Inertia

-—|=—" iy X Yy
—_—— —— ——f——

-l -
—— e — — = =
< _ ] — e
—— —— l_-'lll —
e 1T T

n.t.ll””“V —_——
e | —— -_—— e
< - — e -
—_—F == =P T
A'nbl' —amop e T
—_—— e > —azoTo T
<< =
<7 |-~ —ec T
e — - ”“'
e | — — | T
ﬂ:.l]l..lh-v - I.'IH”
“—4—=> bty L
e T T — In’-”,v
—_—Tg—=> -~
Al'l.nlu - ”““
——= -t
Sooo=s O =
<1 4 | == IUH
_— S e,
AHH.IIV | ot
<] =g
i | «=———"

A

————

N

> <
= 1 | | 1 _ — J

— —

[
L

I’\

I

\
|

d r\\
-dL V
(c)

(b)

omponents as Figure 11.10.

ratio = 150. The inertia ratio is 50, as in the

The one-cylinder engine, start-up from rest at three different force ratios: (a)
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previous figure. Each figure has the same three c
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two is a dashed line indicating the power stroke. When the line is dark, the cylinder
is firing; when the line is absent, the cylinder is in one of the other three strokes. Time
runs from O to 257.41 in dimensionless units in all figures. The ticks on the ordinate
are at intervals of 2 rad/unit time, and the piston moves between +d.

Figure 11.10a shows start-up from rest, and Figure 11.10b start-up from a speed
higher than the equilibrium speed. The figures, taken together, demonstrate effectively
that there is an equilibrium speed and that it is not exactly constant. It can be found
formally by integrating Equation (11.48) with respect to 6, from 0 to 27 and setting
the right-hand side equal to zero, so that the mean imbalance is zero. This would be
done by setting the mean dimensionless rotation rate equal to the negative of the mean
dimensionless force.

Figure 11.11 illustrates this qualitatively. Figure 11.11a shows the start-up
from rest of the system with one-third the force, F = 50; Figure 11.11b shows the
same thing for two-thirds the force, F = 100; Figure 11.11c is a redrawing of
Figure 11.10a.

It is worth noting that the centered slider crank has one toggle point during each
cycle. This is not a problem because the inertia of the system carries the linkage
through smoothly. It could be a problem during start-up, however, because at the top
dead center position the linkage is in toggle. When the linkage is in toggle it can with-
stand, in principle, an infinite force and will not start. (The computer program used
to generate the figures will never move if this condition is used as an initial condition.
I have taken 1° to be the initial value of 8, for all the start-up figures, both here and
later.) In practice, this is an example of unstable equilibrium. The unavoidable depar-
tures from perfect alignment will allow it to move, but it is equally likely to move in
a clockwise direction as in the supposed counterclockwise direction. (This is not a
problem in real engines, which are not started from rest, although I am told by friends
that this is the cause for the occasional *‘kickback’” when a motorcycle is kick-started.)

REACTION FORCES, INERTIA, AND BALANCE

It is fairly easy to add a calculation of the reaction forces to the simple model just
explored. The motion of the linkage is independent of the force equations, and so they
can be solved after the motion is known. The first equation of the pair of equations
(11.27) determines the reaction force at A, the crank bearing, and the first of Equations
(11.2¢) can be used to find the imaginary part of f;, which is the reaction force on the
cylinder walls.

The reaction force on the cylinder walls is directly proportional to the load force,
with a proportionality constant that varies with the position of the linkage. For the
simple case of a massless coupler, the maximum is near the beginning of the power
stroke. It increases with 6, because of geometry, the component of the force in the
coupler perpendicular to the slider track increasing as 6 decreases from 0 while, at
the same time, it decreases because the magnitude of the force drops as the cylinder
expands. The actual maximum depends on the relative magnitudes of these two effects.



Friction and Inertia 219

If the coupler angle remains between + /2, the side force component remains less than
the driving force component. In the examples to be explored, it will remain consid-
erably less.

The crank bearing force f,, can be found by a series of substitutions into Equa-
tion (11.2a). This can be written as

| -
foa = E(iwz — wy)mazy — fap (11.49)

and f,5 can be found from Equation (11.46). I have assumed that the center of mass
is that of a simple bar crank, halfway between the two ends, introducing a factor of
1/2 for g,. For the simple idealization addressed here, f,p5 is zero when F; is zero.
Thus, there are three components to the bearing force. Two of these depend on the
asymmetry of the crank mass distribution. Of these, one, the part with the real coeffi-
cient, is a simple centripetal acceleration term, and the other, the part with the imag-
inary coefficient, a tangential acceleration term. (The distinction between these terms
is explained in detail in Chapter 6.) Both of these can, in principle, be eliminated by
proper balancing of the crank.

The third term is that transmitted through the coupler from the firing of the
cylinder. This one cannot be balanced out, although the apparent effects can be reduced
by using multiple cylinders, and it is well known that multicylinder engines are
“*smoother’’ than single-cylinder engines of the same power. Each individual *‘kick ™’
of a cylinder firing is smaller, and the frequency of kicks is higher, each cylinder still
firing every other revolution of the crankshaft.

Smoothness is also a function of the steadiness of the rotation rate of the output
shaft (the crankshaft). Figures 11.10 and 11.11 show that the rotation rate is not con-
stant, but they show only a small fluctuation. This is because the moment of inertia
of the load is relatively large. Smaller inertias lead to much larger variations in output
shaft speed. This is illustrated in Figure 11.12, which shows start-up from rest of the
same linkage used in the preceding section with F = 150, but with /, reduced to that
associated with the crank alone, I, = I, (Figure 11.12a), followed by slowly
increasing inertia, I, equal to two, three, and four times the minimum inertia. In
general, the less inertia, the more rapid the start-up and the larger the fluctuation in
the output rotation rate. Note the change of time scale between Figures 11.12¢ and
11.12d. The first three figures show the first 100 time units, and the last shows the
first 200 time units.

Figure 11.13a shows the reaction forces at 4 and D for the history shown in Figure
11.12a. The reader can observe that the transients vanish quickly and that the reaction
forces are periodic (but not sinusoidal) at the end of perhaps 30 time units. Figure
11.13b shows a massive system running in a steady state. Not only are the reaction
forces periodic, but they are nearly sinusoidal. The momentary shock of the piston
firing is negligible compared to the centripetal forces, and the large inertia means
that tangential accelerations are also negligible. Finally, Figure 11.14 shows the steady
running of one of the intermediate cases, that corresponding to Figure 11.12c.



220 Forces and Moments

-

:.'\;\5\;’\5\NM\=\;-\-\’\;\5\5\

@

8+
ar '\,-'\i\:'\'\:'\'\\'\l\'\:\!\
i
! 1 1 1 ]
50 100
by — = = = = = = = = = = = - =
st
T NN\;’\J“'\J\J\/\I'\-‘\N\P
Y
/ L 1 1 )
© 50 100
8..
4 ,\N\!\-'\\\“WMWW
~
Fand
/ 1 i 1 J
100 200
@ — = - " - TT ST Sss TS sss s SsTs e

FIGURE 11.12  The effects of inertia on start-up, rotation rate vs. time: (a) shaft inertia only,
first 100 time units shown; (b) inertia equal to twice the shaft inertia, first 100 time units shown;
(c) inertia equal to three times the shaft inertia, first 100 time units shown; (d) inertia equal to
Sour times the shaft inertia, first 200 time units shown. Force ratio = 150.
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FIGURE 11.13  Shaking: reaction forces (arbitrary units) at the shaft (first two curves) and
side force (arbitrary units) at the piston (third line) as a function of time. The pulses in the side

force correspond to the firing of the cylinder. (a) The ‘‘light’’ system of Figure 10.12a; (b) a

massive (high-inertia) version of this system.
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FIGURE 11.14  Steady running of the one-cylinder engine whose start-up is shown in Figure
10.12c: reaction forces at the shaft (first two curves) and side force at the piston (third line) as
a function of time. The spikes visible in the figure correspond to the firing of the cylinder.

EXERCISES

1. Synthesize the dyad shown below. Let p = 1 + 3i (inm), and letp = —2 + 2i
(in m/s). Let w, = 1 rad/s and w3 = 2 rad/s.

2. Formulate the constraint(s) necessary to use shaft torque as a synthesis parameter,
assuming ground pivot specification. Does this make sense at the level of four-bar

synthesis? Explain.

3. What variables would you need to specify to design a ball-throwing machine? Write
the relevant constraint equations. How complex a mechanism seems necessary?

Discuss.

4. How do piston mass, coupler mass, and compression stroke forces affect the reac-
tion forces at A and D for the one-cylinder engine model?
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5 The load on an automobile at highway speeds is dominated by air drag, which is
proportional to the square of the vehicle speed. Adapt the one-cylinder engine
model to investigate the effect of output loading proportional to the square of output
rotation rate.

6. In a real vehicle, the inertia of the system includes that of the vehicle. Translate
vehicular inertia into an equivalent flywheel inertia. Does this help you understand
how a car with *‘rough idle’” can seem quite smooth at highway speeds? Explain.

7. Suppose that the slider-crank mechanism is used to model a piston pump. Construct
a model for the shaft torque required to drive the pump at a constant rotation speed.
Assume two-stroke pumping, and make some appropriate assumption(s) about the
force required to pump the fluid.






References

Beer, F.P., and Johnston, E.R., Jr. 1977. Vector Mechanics for Engineers: Statics and Dynam-
ics, 3rd ed. New York: McGraw-Hill.

Bell, E.T. 1956. The prince of mathematicians. In The World of Mathematics, ed. J.P. Newman,
Volume 1, pp. 295-339. New York: Simon & Schuster.

Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969. Applied Numerical Methods. New York:
Wiley.

Chakraborty, J., and Dhande, $.G. 1977. Kinematics and Geometry of Planar and Spatial Cam
Mechanisms. New York: Wiley.

Chebyshev, P.L. 1854. Theorie des mecanismes connus sous le nom de paraliclogrammes.
Memoires I’Academie Imperiale des Sciences de St. Petersbourg 7:539-568. [Reprinted
in Oeuvres de P.L. Tchebychef. New York: Chelsea, 1961.]

Chebyshev, P.L. 1861. Sur une modification de parallelogramme articule de Watt. Bulletin
physico-mathematique de |'Academie Imperiale des Sciences de St. Petersbourg 4: 433-
438. [Reprinted in Oeuvres de P.L. Tchebychef. New York: Chelsea, 1961.]

Chebyshev, P.L. 1882. Sur les plus simples parallelogrammes qui fournissent un mouvement
rectiligne aux termes de quatriéme ordre prés. [Reprinted in Oeuvres de P.L. Tchebychef.
New York: Chelsea, 1961.]

Chironis, N.P., ed. 1965. Mechanisms, Linkages and Dynamical Controls. New York: McGraw-
Hill.

Courant, R., and Robbins, H. 1947. What is Mathematics? 4th ed. Oxford: Oxford Univ. Press.

Davis, P.J., and Polonsky, I. 1965. Numerical interpolation, differentiation and integration. In
Handbook of Mathematical Functions, eds. M. Abramowitz and [.A. Stegun. New York:
(NBS) Dover.

Erdelyi, A., Magnus, W., Oberhettinger, F., and T ricomi, F.G. 1953. Higher Transcendental
Functions, Volume II, Chapter 10. New York: McGraw-Hill.

Erdman, A.G., and Sandor, G.N. 1984. Mechanism Design: Analysis and Synthesis, Volume 1.
Englewood Cliffs, NJ: Prentice-Hall.

Freudenstein, F. 1955. Approximate synthesis of four-bar linkages. Trans ASME T7: 853-861.

Freudenstein, F., and Dobrjanskyj, L. 1966. On a theory for the type synthesis of mechanisms.
Proceedings of the Xlth International Congress of Applied Mechanics, ed. H. Goertler,
pp. 420-428. Berlin: Springer-Verlag.

Gnudi, M.T., ed. 1972. The Various and Ingenious Machines of Agostino Ramelli (1588). Baliti-
more: Johns Hopkins Press.

Greenspan, H.P., and Benney, D.J. 1973. Calculus. An Introduction to Applied Mathematics.
New York: McGraw-Hill.

Gross, W.A. 1980. Fluid Film Lubrication. New York: Wiley.

Hildebrand, F.B. 1962. Advanced Calculus for Applications. Englewood Cliffs, NJ: Prentice-
Hall.

225




226  Analytical Kinematics

Hochstrasser, U.W. 1965. Orthogonal polynomials. In Handbook of Mathematical Functions,
eds. M. Abramowitz and I. Stegun. New York: (NBS) Dover.

Hrones, J.A., and Nelson, G.L. 1951. Analysis of the Four-Bar Linkage. New York: MIT/
Wiley.

Ince, E.L. 1956. Ordinary Differential Equations. New York: Dover.

McGill, D.J., and King, W.W. 1984. An Introduction to Dynamics. Monterey, CA: Brooks/
Cole.

Meirovitch, L. 1970. Methods of Analytical Dynamics. New York: McGraw-Hill.

Olson, D.G., Erdman, A., and Riley, D.R. 1985. A systematic procedure for type synthesis of
mechanisms with literature review. Mechanism and Machine Theory 20(4): 285-295.

Prager, F.D., and Scaglia, G. 1972. Mariano Taccola and His Book “‘De Ingeneis.’’ Cam-
bridge, MA: MIT Press.

Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. 1986. Numerical Recipes.
The Art of Scientific Computing. Cambridge: Cambridge Univ. Press.

Raven, F.H. 1959. Analytical design of disk cams and three dimensional cams by independent
position equations. ASME J. Appl. Mech. 26(1): 18-24.

Reuleaux, F. 1876. The Kinematics of Machinery, transl. A.B.W. Kennedy. London: MacMillan.

Reynolds, O. 1886. On the theory of lubrication and its application to Mr. Beauchamp Tower’s
experiments including an experimental determination of the viscosity of olive oil. Phil.
Trans. Roy. Soc. A 177: 157-234.

Sandor, G.N., and Erdman, A.G. 1984, Advanced Mechanism Design: Analysis and Synthesis,
Volume 2. Englewood Cliffs, NJ: Prentice-Hall.

Sedov, 1. 1959. Similarity and Dimensional Methods in Mechanics, transl. M. Friedman. New
York: Academic Press.

Shigley, J.E. 1977. Mechanical Engineering Design. 3rd ed. New York: McGraw-Hill.

Strang, G. 1986. Introduction 1o Applied Mathematics. Wellesley, MA: Wellesley-Cambridge.

Szego, G. 1959. Orthogonal Polynomials, American Math Society Collogquium Publ Volume 23.
New York: American Mathematics Society.

Tann, J., ed. 1981. The Selected Papers of Boulton and Wan. Cambridge, MA: MIT Press.

Tesar, D., and Vidosic, J.P. 1965. Analysis of approximate four-bar straight-line mechanisms.
ASME J. Engineering for Industry 87: 291-297.

Truesdell, C. 1968. The mechanics of Leonardo da Vinci ( 1955). In Essays in the History of
Mechanics, ed. C. Truesdell, pp. 1-84. New York: Springer-Verlag.

Usher, A.P.A. 1929. History of Mechanical Inventions. New York: McGraw-Hill.

Vanderplaats, G.N. 1984. Numerical Optimization Techniques Jor Engineering Design with
Applications. New York: McGraw-Hill.

Warren, J.G.H. 1970. A4 Century of Locomotive Building by Robert Stephenson & Co. New
York: Augustus Kelly [Originally published by Andrew Reid, London, 1923].

Woo, L.S. 1967. Type synthesis of plane linkages. ASME J. Engineering for Industry 89(1):
153-158.



Author Index

Beer, F.P., 173, 190
Bell, E.T., 45
Benney, D.J., 40

Carnahan, B., 75, 208, 209
Chakraborty, J., 120, 121
Chebyshev, P.L., 135
Chironis, N.P., 114
Courant, R., 45, 48

Davis, P.J., 165
Dhande, S.G., 120, 121
Dobrjanskyj, L., 31

Erdelyi, A., 164
Erdman, A.G., 114, 152, 153

Freudenstein, F., 31, 155
Gnudi, M.T., 3

Greenspan, H.P., 40

Gross, W.A., 190
Hildebrand, F.B., 163
Hochstrasser, U.W., 164
Hrones, J.A., 71

Ince, E.L., 164

Johnson, E.R., Jr., 173, 190
King, W.W., 10

Leonardo (da Vinci), 3

McGill, D.J., 10
Meirovitch, L., 10

Nelson, G.L., 71

Olson, D.G., 31, 135

Polonsky, 1., 165
Prager, F.G., 3
Press, W.H., 81, 208, 209

Ramelli, A., 3

Raven, F.H., 121

Reuleaux, F., 8, 9, 24, 40, 62, 119
Reynolds, O., 190

Robbins, H., 45, 48

Sandor, G.N., 114, 152, 153
Scaglia, G., 3

Sedov, I., 215

Shigley, J.E., 105

Strang, G., 82

Szego, G., 164

Taccola, M., 3
Tann, J., 3, 135, 180
Tesar, D., 135
Truesdell, C., 3

Usher, AP.A.,3

Vanderplaats, G.N., 168
Vidosic, J.P., 135

Warren, J.G.H., 180
Watt, J., 3
Woo, L.S., 31

227







Subject Index

Abstractions (of mechanisms), 20-22
Acceleration
angular, 96-99
of bar linkages, 91-102
centripetal, 95-99
synthesis, 167-168
tangential, 96-99
Algorithms, for computation, 69-71
Amonton-Coulomb friction rule, 190
Analog computation, 153
Analytic synthesis, 135-169. See also
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Argand diagram, 48, 49
Automotive applications and examples
distributors, 126-127
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model, 212-218
rack-and-pinion steering, 115
rear window, 6-7, 200

Bar linkages, 23-32. See also Four-bar
linkages; Synthesis; Stephenson
linkages; Watt linkages

complex variable representation, 62
four-bar, 24-28, 61-68

Grashof criterion, 25

loop-closure equations, 61-68

more than six bars, 31-32

position analysis of, 61-88

six-bar, 28-30, 161-163

vectorial representation, 40

velocity and acceleration of, 91-102

Bars, 23

Basic kinematic chain (BKC), 31

Binary links, 28

Cam pairs, See Cams

Cams, 9, 42, 105, 119-131
cam profile, 120
cam-fixed system, 120
disk cams, 119
dwell, 120
followers
centered, 119
knife-edge, 120
offset, 119, 125-129
oscillating, 119, 129-131
translating, 119, 121-128
lobes
single, 125-126
four lobe, 126-129
pressure angle, 120
Cartesian coordinate system, 37
complex arithmetic and, 48-50
Cartesian decomposition, 96
Cascaded four-bar linkage, 29
Centered followers (cams), 119
Change point, 180
Chebyshev polynomials, 164-167
Chebyshev spacing, 163-167
Chironis’s compendium of mechanisms, 114
Closed pairs, 8
Coefficient of friction, 190
Coefficient of sliding friction, 190
Coefficient of static friction, 190
Compass, 4, 10, 21-22
Complex arithmetic, 46-47. See also
Complex variables
addition (subtraction), 47
division, 47
examples, 47-48
multiplication, 47
root finding, 54-55
Complex conjugate, 47
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Complex numbers. See Complex arithmetic;
Complex variables
Complex plane, 48
Complex variables, 45-57. See also
Complex arithmetic
arithmetic, 47-48
differentiation, 56-57
graphical representation, 48-53
historical origins, 45-46
magnitude, 49-50
phase, 50
roots and the quadratic equation, 54-55
vector operations in terms of, 55-56
Compression stroke, 212
Computer programs
5.1 Addition of two complex numbers, 69
5.2 Addition of two complex numbers in
polar form, 70
5.3 Four-bar analysis, two link lengths
unknown, 70
5.4 Four-bar analysis, one length and one
angle unknown, 70-71
5.5 Four-bar analysis, two angles
unknown, 71
5.6 Coupler curves, 72-73
5.7 (One-dimensional) Newton-Raphson
root finder, 76
5.8 Four-bar analysis, two angles
unknown, 78
6.1 Four-bar velocity and acceleration, 98
7.1 Cam analysis, 124-125
8.1 Offset slider crank with timing, 140
8.2 Path generation with timing and
ground pivot specification, 150
11.1 Shaft torque for four-bar linkage
with viscous friction, 195
11.2 Shaft torque for a four-bar linkage
(with shaft rotation specified), 198-199
11.3 Slider-crank moments with motion
specified, 199-200
11.4 Integration of a system of equations,
210
Convective derivative, 108
Coordinate system, 37, 42
Corkscrew
geared, 4, 5, 20, 21
sommelier’s, 5, 20-21, 43
Coulomb friction, 190
Coupler, 23

Coupler curves, 71-74

Crank, 23

Crank rocker (linkage), 27, 135, 137
Crank rotation rate, 167

Cross product, 39, 40, 55

Cylindric pair, 8, 9, 12

D’Alembert’s principle, 178
Damping, 190
Design defined, 3-4. See also
Synthesis
Differentiation, of complex numbers,
56-57
Dimensional analysis, 215
Dimensional synthesis, 135-153. See also
Synthesis
defined, 135
Discriminant, 46
Dividers, 4
Division, polar, 53
Dot product, 39, 55
Double crank (linkage), 26
Double rocker (linkage), 26, 27, 28
Drag link (linkage), 26, 27
Driving pins, 175
Dry friction, 190
Dwell (cams), 120
Dyads, 72. See also Synthesis
path synthesis using, 142-147, 155

Eccentric (cams), 119
Eight-bar linkages, 30
Equivalent mechanisms, 18
Euler angles, 10, 11, 37
Exhaust stroke, 212, 213
Eyeglass earpieces, 5-6, 10

Flat oscillating followers (cams), 129
Flat (planar) pair, 8, 9
Follower
cams, 119
four-bar linkage, 23
Foot-brake linkage, of motorcycle, 6, 200
Force-driven systems, 208-218
Forces, 174-178
Four-bar linkages, 24-28, 78, 187, 189
coupler curves and, 71-74
friction, 191-195
loop-closure equation for, 61-68



path synthesis
direct methods, 142-152
indirect methods, 155-160
shaft torque for, 195-196, 198-199
velocity and acceleration, 98-99
Fourier series, 163, 164
Four-lobe cam, behavior of, 126-128
Four-stroke internal combustion engine,
model for, 212-218
Fourth-order accuracy, 209
Frame link, 10, 14
Frame of reference, 37
Free pins, 175
Free-body diagrams, 174-178
Friction, 189-197
Coulomb (Amonton-Coulomb), 190
four-bar linkage, 191-195
lubrication, 190
rotational, 190-191
sliding, 191
Function generation, 135, 142, 152-153
choice of precision points and, 163-167

Gaussian elimination, 82, 84, &6-87
Gaussian integration scheme, 165
Gear trains, 108-118
loop-closure equations, 108, 109
kinematic inversion, 112
Geared corkscrew, 4-5, 20, 21
Gears. See also Gear trains
basic roller pair, 106-109
gear trains, 110-118
rotation of, 107
wheels and, 105-106
Globular pair, 8, 9
Grashof mechanisms, 25, 28
Grashof criterion, 25, 26
Ground link, 10, 14
Ground pivot specification, 148-152,
159-160, 161
optimum design and, 168-169
Ground pivots, 148
Gruebler criterion, 13, 14, 15, 18, 20, 23

Helical (screw) pair, 8, 9, 12
Higher pairs, 8, 9. See also Cams; Gears

Hrones and Nelson Atlas, 71

Imaginary numbers, 46
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Inertia, 197-207, 218-219
moments of, 187
Inertial forces, 178-181
In-line slider crank (linkage), 135
Inner product, 39, 55
Intake stroke, 212
Internal combustion engine, four-stroke,
212-218
Irrational numbers, 46

Joint, universal, 12
Joints. See Kinematic pairs, Lower pairs

Kinematic chain, 10, 31
Kinematic inversion, 18-20
of four-bar linkages, 26
of gear trains, 112
of six-bar linkages, 30
Kinematic pairs, 8-9, 12. See also Lower
pairs
Kinematics, defined, 3
Kinetic analysis, fundamentals, 173-183
Kinetics, defined, 3
Knife-edge followers (cams), 120
Kutzbach mobility criterion
for planar mechanisms, 14, 15, 18, 20
for spatial mechanisms, 13

Lagrangian interpolation formula, 164, 165
Leonardo (da Vinci), 3
Linkages, 23. See also Mechanisms
Links, 8, 10
binary, 28
defining position in space, 10-12
ground, 10
mobility, 12-18
ternary, 28
Lobe (cams), 120
Loop-closure equation, 108, 142
for cams, 120-124
for four-link mechanisms, 61-68
for gears, 108, 109
number necessary, 79-81, 99, 100
Lower pairs
mobility, 12
table and figures, 9
LU decomposition, 87
Lubricated mechanisms, 190
Lubrication, 190
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Magnitude (of a complex number), 49-50
Mechanical advantage, 181
Mechanism, defined, 10
Mechanisms
planar, 10
as vector chains, 40-43
Minimum circle (for gears), 120
Mobile mechanisms, velocity of, 100-102
Mobility
defined, 13
of links, 12-18
Moments, 174-178
Motion generation, 135, 142, 152
Motorcycle, foot-brake linkage, 6, 200

Newton-Raphson techniques, 75, 76-78,
152, 155, 156, 157, 208
Number synthesis, 135

Obijective function, 169

Offset slider crank (linkage), 135, 136
analytical synthesis, 138-141

Offset followers (cams), 119

One-lobe cam, behavior of, 125

Optimum design, 168-169

Orthogonal polynomials, 164

Oscillating followers (cams), 119, 129-131

Outer product, 39, 55

Parallel helical gears, 105
Path generation, 135, 142
Path synthesis, 167
using dyads, 142-147
using indirect methods, 155-160
Phase (of a complex number), 50
Pinions, 5, 106. See also Gears
Pins, 8, 10, 14
free vs. driving, 175
Piston, 4
Pitch circle (gears), 105
Planar (kinematic) chains, 10
Planar mechanisms, 10, 14, 18, 23, 37
Planar (flat) pair, 8, 9, 12
Planet gear, 114, 115
Planetary gear systems, 112, 114, 115
Pliers, vise-grip, 7
Polar notation, examples, 51-53
Power stroke, 212
Pressure angle (cams), 120
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Prime motion, 4
Prime mover, 4
Prismatic pair, 8-10, 12

Quasistatic approximation, 174
Quick-return mechanism, 137

Rack, 5

Rack-and-pinion system, 5, 105, 115

Ramelli, 3

Rational numbers, 46

Reaction forces, 218-219

Real numbers, 46

Reciprocal motion, 4

Reciprocating motion, 3

Relative motion, 10, 12

Reuleaux, 8, 23, 119

Revolute, 8, 9, 10, 12. See also Pins

Reynolds equation, 190

Rigid-body dynamics, 173

Ring gear, 115

Rollers, 106-109. See also Gears

Rotary motion, 3, 25, 191-222. See also
Acceleration; Gears; Velocity

Rotational friction, 190-191

Runge-Kutta method, 209, 211

Scalar force, 177
Scalar products, 39, 55, 56
Screw, 8, 9, 12
Simple Euler scheme (with forward
differences), 209
Simple rotation, changing into reciprocal
motion, 135
Singular mechanisms, velocity analysis of
100-102
Six-bar linkages, 28-30
analysis, 78-81
coupler curve, 79-81
loop-closure equations, 79-81
synthesis, 161-163
velocity and acceleration, 99~100
Slider crank (linkage), 91, 181-183, 187,
189, 199-200
friction, 195-197
in-line, 135
inversions of, 18-20
loop-closure equation for, 61-68
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offset, 135, 136, 138-141

with timing, analytic synthesis, 138-141

Sliders, 10, 14
Sliding friction, 190, 191
Sliding pair, 8
Solvability condition, 139-140
Sommelier’s corkscrew, 5, 20-21, 43
Space-fixed system, 120
Spatial (kinematic) chains, 10
Spatial mechanisms, 13, 14, 18, 37
Spheric pair, 8, 9
Spherical (kinematic) chains, 10
Spur gears, 105. See also Gears
Static fraction, coefficient of, 190
Stephenson linkages, 29-31
Stephenson 1, 30
Stephenson 1I, 29, 78-79, 81
Stephenson III, 29, 30
Straight-line motion, 133
Sturm-Liouville eigenvalue problems,
164
Sun gear, 114-115
Synthesis, 71, 135-169
defined, 4
direct methods, 136-133
dimensional, 135-153
function generation, 133, 152-153

and choice of precision points, 163-167

indirect methods, 155-160
four-bar, 153-160
ground pivot specification, 159-160
six bar, 161-163

motion generation, 135, 152

number, 135
path generation, 135, 142-152
ground pivot specification, 148-152
optimum design, 168-169
six-bar systems, 161-163
slider-crank, 136-141
with timing, 138-141
type, 135
velocity and acceleration, 167-168

Index

Taccolo, 3
Tangential acceleration, 96
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Tangential velocity, of rollers, 107. See also

Gears
Ternary links, 28
Third dimension, 37
Timing ratio, 137, 138-140
Toggle point, 180
Torque, 187
Torque-driven systems, 208-218
Trace point (cams), 119-120
Translating flat followers (cams), 121
Translating followers (cams), 119
Translating roller followers (cams), 119,
121-128
Transmission angle, 180
Type synthesis, 135

Universal joint, 12

Vector analysis, 38-40
Vector chains, mechanisms as, 40-43
Vector notation, 37-39
Vector operations
in complex representation, 55-56

cross product (outer product, vector
product), 39-40, 56
dot product (inner product), 39, 55-36

Vector product, 39, 55-56
Vectors

addition and subtraction, 39
defined, 38
Velocity
of bar linkages, 91-102
synthesis, 167-168
Vise-grip pliers, 7, 10, 28, 43

Watt, 3, 135
Watt linkages, 29, 31, 48
Watt 1, 29, 30

Watt 11, 29, 30
Wheels. See Gears






