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may be employed as a stress function. For the plane region 0 =x <L, 0=y =c
determine the stress boundary conditions, and describe fully the plane problem for which

the stress function serves as the solution for equilibrium.
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Investigate what problem of plane stress is solved by the stress function

3F zy? P
=g\ L) 4o
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Investigate what problem is solved by

F
=" (-i;xy’(3d — 2y)

A Yolos

applied to the region includediny = 0,y = d, z = 0, on the side z positive.
Show that

¢ = 8168 [z’ (y3 (AL 302y + 263) S %ya (y2 — 202)]

.is a stres§ function, and find what problem it solves when applied to the region
included in y = +¢, z = 0, on the side z positive.

AR )Lo.w
For a state of plane strain, o, = f(y). Neglecting body forces, derive the most general
equations for 6,, 6, 6., and 1.

Z\fO)Lo-:J

For a state of plane strain in an isotropic body, o, = a)?, o, = —ax®, 7., = 0. The body
forces and temperature are zero. Using small-displacement elasticity theory, compute the
displacement components u(x, v) and (x, ) (a is a constant).

:\ aOJLQ-»JJ

For a state of plane strain in an isotropic body,
o, =ay* + bx, g, = —ax® + by, T, = —blx+y)

The body forces and temperature are zero. Using small-displacement elasticity theory,
compute the displacement components u(x, y) and v(x, y) (a and b constants). (See Section
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The following stress array is proposed as a solution to a certain equilibrium problem of a
plane body bounded in the region —L/2 <x < L/2, —h/2 <y < h/2:

6, =Ay+BPy+C*,  6,=Dy +Ey+F,
= (Go EP), oy B n = 0

where (x,y,z) are rectangular Cartesian coordinates and A, B....,H are nonzero
constants, Determine the conditions under which this array is a possible equilibrium
solution.

It is proposed that the region be loaded such that Ty =0 for y = +h/2, G, =0 for
y=h/2, 6, =—0c (¢ = constant) for y = —h/2, and g, =0 for x = +L/2. Determine
whether the proposed stress array may satisfv these conditions.

:\VOJLQJ:)

A flat plate is in a state of biaxial tension. The principal stresses are ¢, and o, (see Fig.
P5-2.5). Two electrical strain gages are located as shown. The angle o is given by

] '
cos‘az:‘/— sino =  E
1+v I 4+v

Assume that the material is linearly elastic and isotropic. Prove that the principal stresses

may be read directly (except for a constant factor) as the strains in the direction of the two
strain gages | and 2.

Figure P5-2.5
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Consider a wedge hanging vertically in a gravity field of acceleration g (Fig.‘P5-3.l). The
following elasticity solution for the stress problem of the wedge is proposed:
0, =0,=1, =1, =0, 0. =1pgz, 1. =] pgx. Discuss this proposed solution.
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Consider a beam in the region —h/2 <y < h/2, —b/2 <z < b/2, 0 < x < L. Assume
plane stress in the (x, y) plane, with zero body forces. The stress component normal to the
plane perpendicular to the x axis is 6, = —My//, where M = M(x) is a function of x only,

and I = bh*/12. Derive expressions for o, and 7,, subject to the boundary conditions

=0 fory=th/2 and 6, = 0 fory = h/2. What restriction, if any, must be placed on

M in order that the derived state of stress be compatible? What can be said about o, at
Y= —h/2?
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Given the following stress state:

0, =C +v( =), 7, =—-2Cwy
g, = C[x2 + V(y2 —xz)]. Tye
g, = Cv(x® +)7)

=tx:=0

Discuss the possible reasons for which this stress state may not be a solution of a problem
in elasticity.
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‘An infinite plane strip is bounded by the lines y = +1. The stresses on the lines =]
are g, = cosx, 1, = (. There is no body force. By assuming an Airy stress function of
the form f(y) cosx, determine a,, 7,, 7, as functions of (x, y).

:YYOJLQJ:)

The following stress—strain relations pertain to the anisotropic flat thin plate subjected to a
state of generalized plane stress:

€ = S”Ux + Sua}.
€ =820, + SZZGy

Yo = 3337y (x,y) = rectangular Cartesian coordinates

where S),, S5, S35, S, are elastic constants and where (04, 6,. T,) and (¢,. ¢, Vi) are
- average values of stress and strain through the thickness. Let (q,, 0,. Ty,) be defined in

terms of an Airy stress function F. Show that the defining equation for the Airy stress
function F is of the form

# EN(PE o PEY -5 ;
(et 59) (3 += 57) = o

thene a4y, %, are constants. For the case 8\, = 8, = 1/E, S;, = —v/E, S13 = 1/G, show
‘that Eq. (a) reduces to the biharmonic equation.
|

k
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Let

F=a’+by + i A,(v) cos(ﬂx)
n=1 L
be an Airy stress function for a plane, isotropic problem, where a, b, L are constants, and
A,(v) are functions of y, Derive the defining differential equation for the coefficients A,,.
Consider a plane rectangular region —L < x < L, —C < y < C. Assume that no net
force or no net couple acts on the sections x = L. Discuss how the arbitrary constants in
the solution of the differential equation for 4,(y) may be evaluated.

Vol

Consider a case of plane stress without body forces in the region —¢c <y < ¢, 0 =x < ¢
(see Fig. P5-4.9). If the resultant of the stresses in the x direction is zero, the elementary
beam formula yields ¢, = My/I; that is, &, is a linear function of y.

c |
X
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Figure P5-4.9
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9. Consider a case of plane stress without body forces in the region —c <=y <¢, 0 <x =¥
(see Fig. P5-4.9). If the resultant of the stresses in the x direction is zero, the elementary
beam formula yields 6, = My/I: that is, ¢, is a linear function of y.

c
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Figure P5-4.9
(a) Let 0, =F,,, 0, =F,,, 1,, = —F,,. Write the most general expression for F(x,y)

that satisfies the equations of eqmllbnum and yields a, as linear function of y in the
form a, = yf(x).

(b) Assuming that the material is isotropic and linearly elastic, write the equation of
compatibility for F(x, y) as determined in part (a).

2Y?O)L¢-f)

For a plane problem, the stress components in the (x, ¥) rectangular region 0 < x < L,
—C =y = ¢, where L and c are constants, are given by the relations (g = constant)

&y 4 ( 53,8,
T +4c3( = +5C”"")
_ 9 ) 4
ARSI (4c‘ 40)
3qu2

3 : >
3T @ =P =35 -+ 5 @ -

(a) Show that these stress components satisfy the equations of equilibrium in the absence
of body forces.

(b) Derive the Airy stress function from which these stress components are derivable.
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The stress function for a cantilever beam loaded by a shear force P at the free end is
F=Cx’+Cxy

(a) Evaluate the constants C; and C,.
(b) Derive the expressions for the displacements u and v.

2Y/\O)LQ-:J

Apply the stress function F = —(P/d®)xy*(3d — 2y) to the region 0 <y <d, 0 < x.
Determine what kind of problem is solved by this stress function.

Consider the Airy stress function F' = Ax’y, where 4 is a constant and (:r, y) are
rectangular Cartesian coordinates. Determine the plane elasticity problem that is solved
by this function for the region —a <=x <a, —b <y < b.



